

FINAL PROJECT REPORT

Improving the Performance of Wall Furnaces in California – Final Project Report

Agreement Number: PIR-18-005

Author(s):

Lisa Gartland, Carlos Ortiz, Rohit Jogineedi, Rob Kamisky GTI Energy

Michael Slater, Angelo Karas, Claudia Pingatore Frontier Energy

California Energy Commission Project Manager:

Bradley Meister, Ph.D., P.E. Energy Research and Development Division

Month Year | CEC-500-XXXX-XXX

DISCLAIMER

This report was prepared as the result of work sponsored by the California Energy Commission. It does not necessarily represent the views of the Energy Commission, its employees or the State of California. The Energy Commission, the State of California, its employees, contractors, and subcontractors make no warranty, express or implied, and assume no legal liability for the information in this report; nor does any party represent that the uses of this information will not infringe upon privately owned rights. This report has not been approved or disapproved by the California Energy Commission nor has the California Energy Commission passed upon the accuracy or adequacy of the information in this report

Table of Contents

Table of ContentsList of Figures	
List of Tables	iii
Executive SummaryBackground	
Project Purpose and Approach	1
Key Results	2
Knowledge Transfer and Next Steps	4
Introduction	5
Project Approach	
Field Monitoring Procedures	
Laboratory Testing Procedures	
Baseline Wall Furnaces	
Retrofit Wall Furnaces	
Annual Operation, Energy Use, Cost, and Emissions Calculations	
Results	
Wall Furnace Operating Characteristics	
Wall Furnace Annual Energy Use and Utility Cost Estimates	
Wall Furnace Annual Emissions Estimates	
Effect of Standing Pilot Operation	
Indoor Air Quality Improvements from Retrofit Furnaces	
Retrofit Wall Furnace Cost-Benefit Analysis	
Wall Furnace Installation and Operation Issues	
Conclusion Energy Characteristics	
Energy Savings	42
Emission Reductions	43
Indoor Air Quality Improvements	44
Furnace Costs and Operating Issues	45
Next Steps	46
Acknowledgements	
References	
Project DeliverablesAppendix A: Related Efficiency, Emissions, and Indoor Air Quality Information	
Wall Furnace Characteristics	
Wall Furnace Efficiency Standards	2

Related Emissions and Indoor Air Quality Guidelines	3
Appendix B: Baseline Field Monitoring Results Summary	1 1
Appendix E: Retrofit Laboratory Testing Results Summary	1
List of Figures	
Figure 1: Existing Baseline Wall Furnaces in Hayward 3 (left), Hayward 4 (middle), and Oakland SFH (right)	10
Figure 2: Existing Baseline Wall Furnaces in Los Angeles Apartments 104, 105, 106, and 1 (from left to right)	
Figure 3: Existing Baseline Wall Furnaces in Sacramento Apartments 4 (left), 15 (middle), a 19 (right)	
Figure 4: High Efficiency Williams Wall Furnaces Tested in this Project from left to right: 1753012, AC2030TN, AC3040TN, TG2030TN	12
Figure 5: Average Daily Indoor Temperature versus Average Daily Outdoor Temperature, Baseline versus Retrofit at All Sites	17
Figure 6: Daily Operating Time versus Average Daily Outdoor Temperature for Baseline and Retrofit Wall Furnaces	
Figure 7: Cycle Length versus Average Daily Outdoor Temperature for Baseline and Retro-Wall Furnaces	
Figure 8: Cycles per Day versus Average Daily Outdoor Temperature for Baseline and Ret Wall Furnaces	
Figure 9: Laboratory Test Results for Baseline & Retrofit Wall Furnaces: Natural Gas Use, Exhaust Temperature, Flue Gas Concentrations of CO, NOx & HC	23
Figure 10: Wall Furnace Characteristics and Costs (top to bottom: thermal efficiency, input Btu/hr, distribution type, sides, combustion air)	

List of Tables

Table 1: Wall Furnace Energy Characteristics	2
Table 2: Wall Furnace Annual Operation, Energy Use, and Energy Costs	3
Table 3: Wall Furnace Annual Emissions and Emissions per Fuel Use	3
Table 4: Wall Furnaces and Indoor Air Quality	4
Table 5: Baseline Wall Furnace Characteristics, Gravity Top Vent Non-Condensing Units w Standing Pilots	
Table 6: Retrofit Wall Furnace Characteristics	11
Table 7: Baseline Wall Furnace Nameplate Information	14
Table 8: Retrofit Furnace Nameplate Information	
Table 9: Baseline Furnace Energy Performance Characteristics	
Table 10: Retrofit Furnace Energy Performance Characteristics	
Table 11: Daily Operating Time and Cycle Length Regression Equations	
Table 12: Baseline Wall Furnace TMY3 ACTUAL Annual Energy Use and Cost	
Table 13: Wall Furnace TMY3 AVERAGE Annual Energy Use and Cost	22
Table 14: Carbon Monoxide Emissions from Baseline Wall Furnaces	
Table 15: Nitrogen Oxide Emissions from Baseline Wall Furnaces	25
Table 16: Total Hydrocarbon Emissions from Baseline Wall Furnaces	25
Table 17: Carbon Monoxide Emissions from Retrofit Wall Furnaces	26
Table 18: Nitrogen Oxide Emissions from Retrofit Wall Furnaces	26
Table 19: Total Hydrocarbon Emissions from Retrofit Wall Furnaces	26
Table 20: Wall Furnace TMY3 ACTUAL Annual Emissions	28
Table 21: Wall Furnace TMY3 AVERAGE Annual Emissions	29
Table 22: Baseline Wall Furnace Energy Use with Pilot On All Year	30
Table 23: Baseline Wall Furnace Energy Use with Pilot On Half the Year	30
Table 24: Retrofit Wall Furnace Energy Use with No Standing Pilot	30
Table 25: Baseline Wall Furnace Emissions with Pilot On All Year	31
Table 26: Baseline Wall Furnace Emissions with Pilot On Half the Year	31
Table 27: Retrofit Wall Furnace Emissions with No Standing Pilot	31
Table 28: Baseline Wall Furnace Emissions per Gas Unit with Pilot On All Year	32
Table 29: Baseline Wall Furnace Emissions per Gas Unit with Pilot On Half the Year	32
Table 30: Retrofit Wall Furnace Emissions per Gas Unit with No Standing Pilot	32
Table 31: Average IAQ Concentrations Baseline and Retrofit Furnaces Off and On	33
Table 32: Maximum IAQ Concentrations Baseline and Retrofit Furnaces Off and On	34
Table 33: Wall Furnace Detailed Characteristics and Costs	35
Table 34: Wall Furnace Cost-Benefit under ACTUAL Usage Patterns with Baseline Furnace	Э
Pilot on All Year, Scenario 1	37

Pilot on Half the Year, Scenario 2	,
Table 36: Wall Furnace Cost-Benefit under AVERAGE Usage Patterns with Baseline Furnace Pilot on All Year, Scenario 3	
Table 37: Baseline and Retrofit Wall Furnace Energy Characteristics41	
Table 38: Baseline and Retrofit Annual Energy Use, Energy Cost, and Savings during ACTUAL Operation under TMY3 Weather Conditions42	
Table 39: Baseline and Retrofit Annual CO, NOx, and THC Emissions and Savings during ACTUAL Operation under TMY3 Weather Conditions43	;
Table 40: Average and Maximum Concentrations of Indoor Air Pollutants during Baseline and Retrofit Wall Furnace Operation44	ŀ
Table 41: Minimum Wall Furnace Thermal Efficiency Requirement from ANSI Z21.86-20162	,
Table 42: Minimum AFUE Requirements for Wall Furnaces manufactured after January 1, 1990 and April 16, 20132)
Table 43: Emissions and Indoor Air Quality Regulations, Standards and Guidelines4	ŀ
Table 44: Summary of Baseline Wall Furnace Operation1	
Table 45: Average Carbon Monoxide and Nitrogen Oxides Concentrations (top) and Average Particulate Matter PM2.5 and PM10 Concentrations (bottom) at All Sites when Baseline Furnaces are On and Off	,
Table 46: Maximum Carbon Monoxide and Nitrogen Oxides Concentrations (top) and Maximum Particulate Matter PM2.5 and PM10 Concentrations (bottom) at All Sites when Baseline Furnaces are On and Off	
Table 47: Summary of Retrofit Wall Furnace Operation1	
Table 48: Average Carbon Monoxide and Nitrogen Oxides Concentrations (top) and Average Particulate Matter PM2.5 and PM10 Concentrations (bottom) at All Sites when Retrofit Furnaces are On and Off	<u>, </u>
Table 49: Maximum Carbon Monoxide and Nitrogen Oxides Concentrations (top) and Maximum Particulate Matter PM2.5 and PM10 Concentrations (bottom) at All Sites when Retrofit Furnaces are On and Off	3
Table 50: Overall Flue Gas Emission Rates of Retrofit Wall Furnaces during Actual and Normalized Operation4	ļ
Table 51: Baseline Wall Furnace Natural Gas Input Rates1	
Table 52: Baseline Wall Furnace Thermal Efficiency and AFUE2	
Table 53: Baseline Wall Furnace Energy Use and Emission Rates for a Typical Day of Operation2	
Table 54: Retrofit Wall Furnace Natural Gas Input and Electrical Power1	
Table 55: Retrofit Wall Furnace Thermal Efficiency and AFUE2	
Table 56: Retrofit Wall Furnace Energy Use and Emission Rates for a Typical Day of Operation	

Executive Summary

This is the final report for CEC-PIR-18-005, "Improving the Performance of Wall Furnaces in California", a project designed to yield gas savings by replacing existing wall furnaces with more efficient retrofit models. This project gathers information about furnace performance, operation, emissions, and indoor air quality from laboratory testing and field monitoring of baseline and retrofit wall furnaces.

Background

There are an estimated are 1.4 million wall furnaces in California. Wall furnaces were introduced in California as early as 1930 and gained prevalence in single-family homes and low-rise multifamily residential buildings as primary or auxiliary sources of heating. Wall furnaces are frequently as old as the buildings they occupy. The oldest existing furnaces have thermal efficiencies of 50% while today's standard replacement wall furnaces have thermal efficiencies of 70%.

More advanced wall furnaces achieve thermal efficiencies of 80% to 94% by eliminating pilot lights, using more efficient heat exchangers, and incorporating condensing or modulating technology. This leaves substantial savings potential for a state-wide replacement program that promotes furnaces using these efficiency advancements.

This final report documents overall savings results from the evaluation of baseline and retrofit wall furnaces in California homes. Other interim reports for this project document laboratory testing and field monitoring of existing baseline and installed retrofit wall furnaces.

Project Purpose and Approach

The goal of this research is to demonstrate cost-effective solutions for retrofitting existing wall furnaces in California multifamily and single-family residences. This final report gives an overview of the field monitoring and laboratory testing that were done on existing baseline wall furnaces and advanced retrofit wall furnaces.

The baseline wall furnaces studied in this project were existing wall furnaces that were in service in California homes. Ten baseline vented gravity wall furnaces were tested:

- Two in side-by-side apartments in Hayward (apartments 3 and 4)
- Four in a retirement apartment community in Los Angeles (104, 105, 106, and 107)
- One in a single-family home in Oakland (SFH)
- Three in multifamily apartments in Sacramento (4, 15, and 19)

These furnaces were monitored in the field over a heating season, then were removed and shipped to Des Plaines, IL facilities for testing in GTI Energy's Residential and Commercial Equipment laboratory.

Ten retrofit wall furnaces studied in this project were installed in California homes in place of the baseline furnaces, then monitored over a second heating season:

- Two 1753012 direct vent condensing furnaces side-by-side apartments in Hayward (apartments 3 and 4)
- Four AC2030TN vented fan-type furnaces in a retirement apartment community in Los Angeles (104, 105, 106, and 107)
- One AC3040TN vented fan-type double-sided furnace in a single-family home in Oakland (SFH)
- Three TG2030TN vented fan-type self-powered furnaces in apartments in Sacramento (4, 15, and 19), with apartment 19's furnace operated by two different tenants

The field monitoring performed by the research team included:

- Heating season measurement of furnace operation
- Heating season measurement of indoor temperature and humidity
- Heating season measurement of indoor air quality (IAQ) in terms of concentrations of carbon monoxide, nitrogen oxides, and particulate matter (PM2.5 and PM10)

Laboratory testing of the ten baseline furnaces and four different retrofit furnace models included measurements of the following parameters:

- Furnace natural gas flow during operation and standby (i.e. pilot gas use, if any)
- Electricity use, if any
- Operating ambient, inlet, outlet, and exhaust temperatures
- Exhaust gas concentrations of carbon monoxide, nitrogen oxides, and total hydrocarbons

Field and laboratory data are used to estimate energy savings, emissions reduction, and indoor air quality improvements of retrofit wall furnaces compared to baseline furnaces. Utility costs, wall furnace pricing, and installation costs are analyzed to determine the cost effectiveness of advanced retrofit wall furnaces compared to baseline furnaces. Problems with the installation and operation of these wall furnaces are assessed and recommendations for improvements are made.

Key Results

Table 1 lists the average energy characteristics of the ten baseline and ten retrofit wall furnaces tested during this project. This shows the difference between rated and tested values of these furnaces, resulting in a 31% higher tested output capacity on average for the retrofit furnaces than the baseline furnaces.

Table 1: Wall Furnace Energy Characteristics

	Natural Gas I	nput Capacit	У	Thermal	Efficiency	Natural Gas O	AC Power	
	Rated Input Btu/hr	Tested Input Btu/hr	Pilot Btu/hr	Rated TE	Tested TE	Rated Output Btu/hr	Tested Output Btu/hr	Active W
Baseline Average	33500	29990	690	67.0%	65.3%	22490	1919 0	0
Retrofit Average	28500	30830	0	85.7%	82.0%	24190	25050	2 6.3
Difference	5000	-840	690	-18.7%	-16.6%	-1700	-5860	-26.3
Percent Difference	15%	-3%	100%			-8%	-31%	

Table 2 shows annual operation, energy use, and energy costs of baseline and retrofit wall furnaces. Projections are based on laboratory tests and field monitoring and estimated for a Typical Meteorological Year at each wall furnace location to remove any differences in weather

during baseline and retrofit periods. The retrofit furnaces operated for 37% fewer hours, in part because they have higher capacity than the baseline furnaces, and in part because the fantype furnaces distribute heat more efficiently. Fewer operating hours, plus the removal of the standing pilot, resulted in retrofit wall furnaces using 68% less natural gas on average, although some furnaces also used a small amount of electricity. Average annual utility bills were reduced by \$148 or 68%.

Table 2: Wall Furnace Annual Operation, Energy Use, and Energy Costs

	Operating hrs/year	Cycles/year	Avg Cycle Minutes	MMBtu/year	kWh/year	Utility Cost
Baseline Average	188.5	417	27.1	11.52	0.0	\$219
Retrofit Average	1 18.7	208	34.3	3.70	2.4	\$71
Savings	69.7	226	18.5	7.81	-2.5	\$14 8
% Savings	37%	54%	68%	68%		68%

Table 3 lists average annual emissions from the baseline and retrofit wall furnaces tested in this project. Using the same operating characteristics as in Table 2, annual emissions are projected to be at least 86% lower, respectively, while emissions per unit of natural gas fell by at least 49%. The bulk of the CO and THC emission reductions are due to removal of the standing pilot, while NOx emission reductions are also due to combustion improvements specifically made to reduce NOx formation in three of the four retrofit furnaces studied.

Table 3: Wall Furnace Annual Emissions and Emissions per Fuel Use

				со	NOx	THC
	CO lbm/year	NOx lbm/year	THC lbm/year	lbm/MMBtu	lbm/MMBtu	lbm/MMBtu
Baseline Average	2.39	0.70	1.21	0.207	0.061	0.105
Retrofit Average	0.32	0.10	0.08	0.084	0.031	0.041
Savings	2.07	0.60	1.12	0.123	0.030	0.064
% Savings	87%	86%	93%	59%	49%	61%

Table 4 lists the average and maximum indoor pollutant concentrations for the baseline and retrofit furnaces. The retrofit furnaces have mixed effects on indoor air quality. Drops in indoor pollution levels when furnaces were ON (average CO and NOx, maximum NOx, PM2.5, PM10) indicate that some furnace exhaust gases do make their way into the indoor spaces, and the lower emitting retrofit furnaces reduce indoor pollutant levels. However, indoor pollutant concentrations should have dropped dramatically after the retrofit furnaces were installed if wall furnaces were the largest source of indoor air pollution. Indoor pollution is also potentially being generated by natural gas ranges and water heaters, and coming from numerous other consumer products, as well as directly from food as it is being cooked.

When the furnaces were OFF, indoor pollutant concentrations were unexpectedly lower for baseline furnaces than retrofit furnaces. This beneficial effect of wall furnace operation is also confirmed by improved IAQ concentrations when furnaces are ON. It is theorized that wall furnaces draw air from the space for combustion when they operate, even when only the pilot light is burning, and help to reduce indoor pollutant concentrations. This is not a reason to keep inefficient wall furnaces, but instead points to the need to control indoor pollution via source reduction and use dedicated ventilation, especially during cooking.

Table 4: Wall Furnaces and Indoor Air Quality PM2.5 Off PM2.5 On PM10 Off PM10 On Average IAQ CO Off CO On NOx Off NOx On Concentrations ppmx10 ppmx10 ppb/10 ppb/10 ug/m3 ug/m3 ug/m3 ug/m3 **1**5.7 18.9 17.4 19.0 **15.2 15.5** 16.5 18.5 Baseline Average **15**.9 13.6 24.7 18.8 21.6 20.4 24.2 22.4 Retrofit Average -0.B 5.2 **-7.3** 0.2 -6.4 **-4.9** -7.7 -3.9 Reduction -2% 28% -42% 1% -42% **31**% **-47**% -**21**% % Reduction 50-150 ppmx10 3.0 ppb/10 35 ug/m3 50 ug/m3 Comparative 24 hour outside inside properly 24 hour outside 24 hour outside Limit adjusted (US EPA) (CAAQS) (NAAQS) (CAAQS) Maximum IAQ CO Off CO On **NOx Off** NOx On PM2.5 Off PM2.5 On PM10 Off PM10 On **Concentrations** ppmx10 ppmx10 ppb/10 ppb/10 ug/m3 ug/m3 ug/m3 ug/m3 35.9 39.4 Baseline Average 45.6 24.5 54.9 26.5 134.2 **152.9** 185.4 **70**.7 29.5 58.8 22.4 211.8 Retrofit Average 34.5 37.3 -25.2 -4.0 -51.2 Reduction -5.0 4.1 1.3 -58.9 2.2 -55% -20% -7% 16% -38% 4% -38% 5% % Reduction 50-150 ppmx10 18 ppb/10 35 ug/m3 50 ug/m3 Comparative inside properly 1 hour outside 24 hour outside 24 hour outside Limit

The incremental costs of advanced retrofit furnaces over standard baseline furnaces range from \$2100 to \$2940. This led to high simple payback periods from 8 to 38 years for retrofit furnaces compared to standard efficiency furnaces with standing pilots that operate all year, averaging 20 years. Based on existing furnaces, retrofit furnaces are expected to have a longer life than their payback period. Utility incentives for these furnaces can help them gain market share while accruing significant emission reductions. However, advanced furnace prices must be reduced to gain substantial market share in the future.

(CAAQS)

(NAAQS)

(CAAQS)

There were also some operating issues that need to be improved in the retrofit furnaces.

- Noise levels from these fan-type retrofit furnaces was sometimes unacceptably high, and it is recommended they adhere to levels mandated for intermittent indoor fans
- Self-charging batteries used on one of the retrofit models are a promising advance, but they need to be more reliable and have clearer operating instructions
- Wall furnace controls need to be adjusted to improve occupant comfort and control

Knowledge Transfer and Next Steps

adjusted (US EPA)

Information from this study is being disseminated to manufacturers, utilities, HVAC contractors, affordable housing advocates, and other interested parties.

Future work on wall furnaces should concentrate on 1) verifying the savings results found in this project, 2) studying effects on indoor air quality in more depth, 3) testing future iterations of these furnaces with improved batteries, reduced noise levels, and better controls, and 4) reinvestigating wall furnace costs after these furnaces have been on the market for year or so.

One more potential next step in the study of retrofit wall furnaces is to compare them to heat pumps, either thru-the-wall packaged terminal heat pumps (PTHPs) or mini-split heat pumps. As it involves fuel switching, this comparison is a complex analysis that was beyond the scope of this laboratory and field project.

Introduction

This project's overall objective is to characterize the operation, energy, indoor air quality, and emissions of existing and retrofit wall furnaces. The goal of this research is to investigate and demonstrate efficient solutions for retrofitting existing wall furnaces in California multifamily and single-family residences.

A wall furnace is a compact device installed within a home's wall cavity which is used to heat one or two rooms. Because they are less expensive, simpler to install, and take up less space than a centrally ducted furnace system, they are often used to heat apartments and smaller single-family homes.

Wall furnaces are categorized by how they distribute heat (gravity or fan-type), where their combustion air comes from (from inside for top vent furnaces, from outside for direct vent furnaces), how they ignite the burner (standing pilot, intermittent pilot, or hot surface igniter), and whether they use condensing technology. Additionally, furnaces can be either single-sided to serve just one room, or double-sided to serve rooms on either side of the wall in which it is installed. Wall furnace technologies are described in more depth in Appendix A.

Many California low-rise multifamily buildings and smaller homes use wall furnaces for space heating. Most of these existing wall furnaces are non-condensing gravity vented furnaces that use a standing pilot to ignite the burner. Wall furnaces are usually replaced only when the original unit is irreparably broken. Anecdotal information from Williams, the predominant wall furnace manufacturer, indicates that many older furnaces are still in operation, some without safety switches and with rated thermal efficiencies as low as 50%.

Most replacement wall furnaces are non-condensing gravity vented furnaces that just meet current efficiency standards. ANSI Z21.86 for Vented Gas-Fired Space Heating Appliances (ANSI Z21.96 2016) is the federal regulating standard for wall furnaces, It currently requires gravity wall furnace thermal efficiency to be at least 70% and fan-type wall furnace efficiency to be at least 75%. In addition, Annual Fuel Utilization Efficiency (AFUE) for wall furnaces are mandated under the Code of Federal Regulations (CFR 430.32 (i) (1) 2022) and (CFR 430.32 (i) (2) 2022). AFUE must be at least 65% to 76%, depending on furnace capacity and whether it is a gravity or fan-type wall furnace. More information about wall furnace efficiency standards is included in Appendix A.

Minimum wall furnace AFUE levels are well below the 81% AFUE requirement for standard central ducted furnaces and even further below the >90% AFUE that condensing furnaces can deliver. However, wall furnaces have recently been developed with thermal efficiencies as high as 85% and AFUE up to 82%, achieved by improving burners and removing standing pilot lights. In addition, condensing wall furnaces with thermal efficiency up to 94% and AFUE as high as 93% have been developed.

As with all primary gas space heating equipment in the state of California, emissions from wall furnace combustion are required to be vented to the outside to prevent the accumulation of indoor pollutants. There are no federal or California limits for wall furnaces regarding flue gas emissions or indoor pollutants, although there are some limits on NOx emissions for natural gas-fired fan-type central furnaces in California's South Coast Air Quality Management District

(SCAQMD) and the San Joaquin Valley Air Pollution Control District (SJVAPCD). See Appendix A for information about guidelines, standards, and regulations that pertain to indoor air quality and furnace emissions.

This project examines existing baseline and efficient retrofit wall furnaces in the laboratory and the field to assess their performance, ease of installation, operation, and reliability. Energy use, emissions, indoor air quality, and costs were assessed to help determine whether efficient retrofit wall furnace technologies should be promoted in California.

This interim report describes results from field monitoring of nine retrofit wall furnaces in California homes:

- Two 1753012 direct vent condensing furnaces side-by-side apartments in Hayward
- Four AC2030TN vented fan-type furnaces in retirement apartments in Los Angeles
- One AC3040TN vented fan-type double-sided furnace in an Oakland single-family home
- Two TG2030TN vented fan-type self-powered furnaces in Sacramento apartments, with one of these furnaces operated by two different tenants

Field monitoring results were combined with laboratory test data for each of these furnaces to estimate their field energy use, emissions, and effects on indoor air quality. More efficient retrofit furnaces were also laboratory tested and field monitored as part of this project. Comparisons of baseline and retrofit wall furnace energy use, emissions, and indoor air quality were made to evaluate the benefits that can be realized through the installation of more efficient retrofit furnaces. Initial purchase and installation costs and long-term utility costs were assessed to estimate cost effectiveness. Furnace operability and reliability issues were also addressed.

Project Approach

This project combined field monitoring and laboratory testing of wall furnaces. Existing baseline furnaces were first field monitored over a heating season, then removed and sent for testing in GTI Energy's Des Plaines, IL laboratory. Advanced efficient retrofit furnaces were installed at each field site and monitored for another heating season. Additional retrofit furnace units were also shipped to Des Plaines for laboratory testing.

Field monitoring and laboratory testing procedures are briefly described below. Descriptions of the baseline and retrofit wall furnaces are also given. More detailed information including equipment, site characteristics, and analysis equations can be found in these project reports:

- Baseline Wall Furnace Laboratory Test Report
- Retrofit Wall Furnace Laboratory Test Report
- Baseline Wall Furnace Field Monitoring Report
- Retrofit Wall Furnace Field Monitoring Report

Field Monitoring Procedures

The objective of the field monitoring portion of this project was to characterize the operation of wall furnaces and their effects on indoor air quality. Field monitoring included measuring furnace run time, indoor temperature, and relative humidity. Levels of indoor carbon monoxide (CO), nitrogen oxides (NOx), and particulate matter (PM2.5 and PM10) were also monitored in each dwelling to quantify the effects of wall furnace operation on indoor comfort and air quality.

A single monitoring package from Senseware was used for this research. The Senseware package included visually unobtrusive sensors that measured furnace operation, indoor conditions, and indoor air quality. During the monitoring period, data was collected every minute from each sensor and sent to the wireless node, then relayed to the cloud through the gateway at least twice a day. Each furnace was monitored over a winter heating season.

Field monitoring data from each site was supplemented with regional weather data and air quality data. Hourly weather data including outdoor temperature, humidity, and wind speed was collected from the National Oceanic and Atmospheric Administration's Climate Data Online Tool for Local Climatological Data (NOAA 2022), an archive of historical weather data collected by the National Climate Data Center. Hourly air quality data, including levels of carbon monoxide, nitrogen oxides, and particulate matter PM2.5, was collected from the California Air Resources Board Air Quality Data Query Tool (CARB 2022).

Key results from field monitoring include:

- Wall furnace operating hours based on gas solenoid valve signals
- Indoor air quality measurements (CO, NOx, PM2.5, PM10)
- Indoor temperature and relative humidity
- Correlations with outdoor temperatures from local weather stations

Laboratory Testing Procedures

Laboratory testing included measurement of furnace natural gas flow, electricity use, operating temperatures, and concentrations of carbon monoxide (CO), nitrogen oxides (NOx), and total hydrocarbons (THC) in exhaust gases.

Gas flow was measured using a pulse meter, and electricity use measured via current transducers. Single thermocouples were used to measure ambient room temperature and inlet temperature, a set of three thermocouples measured exhaust gas temperature, and an array of nine thermocouples measured heated outlet temperatures around the furnace face. A Horiba PG350 gas analyzer was used to measure nitrogen oxides and carbon monoxide, and it was supplemented by a Rosemount Analytical 400 A gas analyzer to measure total hydrocarbon emissions. The furnaces were not installed into a wall assembly designed to mimic a typical internal wall cavity, but GTI Energy's Des Plaines laboratory technicians followed all other ANSI Z21.86 requirements.

The test protocol covered furnace operation during standby, startup, steady state, and shutdown. The test procedure included the following steps:

- Leave furnace on standby with the pilot lit for 30 minutes to record any pilot and/or electrical energy use
- Cold start start up furnace and allow it to run for 45 minutes (steady state operation from cold start is usually reached in less than 30 minutes)
- Turn off furnace and let it sit in standby with the pilot lit for 1.5 minutes
- Hot start start up furnace again and let it run for 30 minutes (steady state operation from a hot start is usually reached in less than 20 minutes)

Data from all equipment was synchronized and corrected to an ambient oxygen percentage of 20.9%, and minimum emission concentrations were adjusted to 0%. Test data was analyzed to determine gas flow rates during standby and active operation. Emission concentrations were converted to emission rates in lbm per MMBtu of natural gas energy used. Wall furnace thermal efficiency and AFUE (annual fuel utilization efficiency) were calculated for steady state operation based on Title 10 of the Code of Federal Regulations, Appendix O, Subpart B, Part 430 (CFR 430.32 2022) Unlike central furnaces which are most often allowed to cycle automatically to meet a thermostat setting, wall furnaces are much more likely to be turned on and off manually when occupants want heating. To reflect this operation, thermal efficiency and AFUE were found as the average of the efficiency for heaters that are automatically controlled and the efficiency for heaters with manual controls.

Key parameters derived from laboratory measurements included each furnace's:

- input capacity
- pilot gas use
- thermal efficiency and AFUE
- emission rate of carbon monoxide, nitrogen oxides, and total hydrocarbons during standby, startup, steady-state, and shutdown operations

Baseline Wall Furnaces

Baseline furnaces from ten sites were field monitored and laboratory tested during this project:

- four apartments (104, 105, 106, and 107) in Los Angeles
- one single-family home in Oakland
- two apartments (3 and 4) in Hayward
- three apartments (4, 15, and 19) in Sacramento

A summary of the characteristics of each baseline furnace is presented in Table 5. All the monitored baseline furnaces are gravity, top vent, non-condensing furnaces with standing pilots. See Appendix A for a description of each of these furnace technologies.

Table 5: Baseline Wall Furnace Characteristics, Gravity Top Vent Non-Condensing Units with Standing Pilots

	aricy top rei	it Mon-Conden	<u> </u>	***********	cananing	- 11005	
Field Site	Manufacturer	Model*	ANSI Z21 Std	Age years	Input Btu/hr	Thermal Efficiency	Rated AFUE
Hayward 3	Perfection Products	PW825SEN-B-4 #1	49a.1982	~40	25,000	50%	n/a
Hayward 4	Perfection Products	PW825SEN-B-4 #2	49a.1982	~40	25,000	50%	n/a
Los Angeles 104	Williams	25GV-A1	49.1986	~35	25,000	70%	n/a
Los Angeles 105	Williams	35GV-C #1	49.1986	~35	35,000	70%	n/a
Los Angeles 106	Williams	35GV-C #2	49.1986	~35	35,000	70%	n/a
Los Angeles 107	Williams	RMG35IN	49.1986	~35	35,000	70%	n/a
Oakland SFH	Williams	5009622 (Double-sided)	86a.2005	~15	50,000	76%	74%
Sacramento 4	Holly General	Narrowall 35S-D #1	none	40+	35,000	70%	n/a
Sacramento 15	Holly General	Narrowall 35S-D #2	none	40+	35,000	70%	n/a
Sacramento 19	Williams	3509622	86.2008	~10	35,000	74%	72%

^{*} All models are single-sided except for the double-sided Williams model 5009622.

Figure 1, Figure 2, and Figure 3 show the existing baseline wall furnaces described in Table 5 as they were installed in each California home.

Figure 1: Existing Baseline Wall Furnaces in Hayward 3 (left),
Hayward 4 (middle), and Oakland SFH (right)

Figure 2: Existing Baseline Wall Furnaces in Los Angeles Apartments 104, 105, 106, and 107 (from left to right)

Figure 3: Existing Baseline Wall Furnaces in Sacramento Apartments 4 (left), 15 (middle), and 19 (right)

Retrofit Wall Furnaces

Retrofit furnaces were installed at ten sites for monitoring during this project. These sites were:

- · two apartments (3 and 4) in Hayward
- four apartments (104, 105, 106, and 107) in Los Angeles
- · one single-family home in Oakland
- three apartments (4, 15, and 19) in Sacramento.

Retrofit field monitoring could not be completed at the Sacramento apartment 15 site because the replacement furnace would not operate and had to be removed. A summary of the characteristics of each installed retrofit furnace is presented in Table 6, and photographs of each furnace are shown in Figure 4.

Table 6: Retrofit Wall Furnace Characteristics

Field Sites	Manufacturer	Model	Input Btu/hr	Thermal Efficiency	Rated AFUE	Features
Hayward 3 & 4	Williams	1753012	17,500	94%	93%	 Direct Vent Condensing Hot Surface Igniter 2 Stage Heat Exchanger Fan-Type w/AC Power
Los Angeles 104-107	Williams	AC2030TN #1 & #2	30,000	85%	82%	 Top Vent Intermittent Pilot Fan-Type w/AC Power Low NOx emissions Single-Sided Traditional Form Factor
Oakland SFH	Williams	AC3040TN	40,000	83%	80%	 Top Vent Intermittent Pilot Fan-Type w/AC Power Low NOx emissions Double-Sided Traditional Form Factor
Sacra- mento 4, 15 & 19	Williams	TG2030TN	30,000	82%	80%	 Top Vent Intermittent Pilot Fan-Type w/Battery Low NOx emissions Traditional Form Factor

The Williams AC2030TN, AC3040TN, and TG2030TN furnaces described in Table 6 and shown in Figure 4 are all top vent furnaces with traditional form factors. The Williams 1753012 furnace is a direct vent condensing furnace, with a different form factor, and is usually installed on an outside wall for easy access to outside air. In this study, the 1753012 furnaces were installed on an inside wall using extra inlet ducting through which to draw in outside air and venting through the existing outlet duct.

Figure 4: High Efficiency Williams Wall Furnaces Tested in this Project from left to right: 1753012, AC2030TN, AC3040TN, TG2030TN

Annual Operation, Energy Use, Cost, and Emissions Calculations

The wall furnaces were field monitored over different time periods with varying weather conditions. Regression equations were developed from the monitoring data, and then used determine how these furnaces would have operated during a normalized year of weather. The procedures used for calculating normalized annual operating hours, furnace on-off cycles, energy use, and emissions are described below.

First, regression equations were developed from field monitoring data to describe daily hours of operation versus average daily outdoor temperature, as well as the average daily cycle length versus average daily outdoor temperature. These equations are listed in Table 11 of the Results section of this report

Average daily outdoor temperatures for a typical meteorological year were derived from TMY3 files compiled from the National Solar Radiation Database (NSRDB 2022) for years 1998 to 2020 at location 131637 for Sacramento, 122886 for Oakland/Hayward, and 83557 for Los Angeles. Hourly temperatures were then averaged for each day of the TMY3 data set to get the average daily outdoor temperature (ADOT) at each location.

These ADOT values were used in the regression equations to calculate operating time and cycle length for each day of the typical meteorological year. Daily operating time was set to zero if the regression returned a negative number for any day. Daily cycle length was set to the

operating time if this length was lower than the daily operating time. Cycles per day were calculated by dividing operating hours by cycle length.

Annual operating time and the number of cycles were then summed for all days of the typical meteorological year. An average annual cycle length was found by dividing annual operating time by the total number of cycles. Total annual operating time and the number of cycles were customized to each site by multiplying them by a ratio of each site's monitored operating hours per day divided by the averaged monitored operating hours per day for all sites at that location.

Annual energy use was calculated using equations 1, 2 and 3:

- 1) Annual Natural Gas Use, Btu = Tested Btu/hr x Operating Hours/year + Pilot Btu/hr x Standby Hours/year
 - 2) Standby Hours/year = Total Hours/year Operating Hours/year
 - 3) Annual Electricity Use, kWh = Operating Hours/year x Active W

Rates of energy use found during laboratory tested are listed in the Results section of this report in Table 9 for baseline wall furnace and in Table 10 for retrofit wall furnaces. Two AC2030TN retrofit furnaces were tested, and average values from those tests were used in equations 1, 2, and 3 for the Los Angeles furnaces.

Residential utility costs of \$19.00 per MMBtu of natural gas and \$0.25 per kWh of electricity. These costs are based on average California utility rates collected by the US Energy Information Administration for October 2021 through September 2022 (US EIA #1 2023, US EIA #2 2023, US EIA #3 2023).

Total flue gas emissions were found from the sum of emissions during standby, startup, steady state, and shutdown operations, using equations 4 through 8:

- 4) Standby Emissions lbm/day = [Standby hrs/day x Pilot Btu/hr x Standby Emission lbm/MMBtu] / (1000 x 1000)
- 5) Startup Emissions lbm/day = [Cycles/day x minimum (Cycle minutes/60 or Avg Startup minutes/60) x Tested Btu/hr x Startup Emission lbm/MMBtu] / (1000 x 1000)
 - 6) Steady state Emissions lbm/day = [Cycles/day x maximum (Cycle min/60 Avg Startup min/60) x Tested Btu/hr x Steady state Emission lbm/MMBtu] / (1000 x 1000)
- 7) Shutdown Emissions lbm/day = [Cycles/day x (1.5 minutes/60 x Pilot Btu/hr + 2 seconds/3600 x Tested Btu/hr) x Shutdown Emission lbm/MMBtu] / (1000 x 1000)
 - 8) Total Emissions, lbm/day = Standby Emissions + Startup Emissions + Steady state Emissions + Shutdown Emissions

Note that equations 1 through 8 assume that any standing pilots stay lit all year, burning natural gas and creating emissions outside the heating season when the furnace would be actively heating. It is likely that some fraction of wall furnaces is completely shut down with the standing pilot off outside of the heating season, but it was outside the scope of this research to establish that fraction. However, energy use, emissions, and savings were also estimated for baseline furnaces with pilot lights turned off for six months of the year.

Laboratory tested flue gas emissions during standby, startup, steady state, and shutdown modes of operation are listed in the Results section of this report in Table 14, Table 15, and Table 16 for baseline furnaces and in Table 17, Table 18, and Table 19 retrofit furnaces. Average values of emissions from the two AC2030TN furnaces are used to calculate overall emissions for the Los Angeles wall furnaces.

Results

The following report section presents and compares the results from laboratory testing and field monitoring of baseline and retrofit wall furnaces, including:

- Performance characteristics from laboratory testing
- Flue gas emissions from laboratory testing
- Operating characteristics from field monitoring
- Indoor air quality levels from field monitoring

These results were used to estimate annual wall furnace energy use and emissions during a typical meteorological year.

First, we summarize nameplate information from the baseline and retrofit wall furnaces that were studied in this project in Table 7 and Table 8.

Table 7: Baseline Wall Furnace Nameplate Information

Manufacturer	Model	Description	Field Sites	Age years	Rated Input Btu/hr	% Rated	Rated Output Btu/hr
Perfection Products	PW8G25SEN #1	1-sided, top vent, gravity	Hayward 3	~40	25000	81%	17500
Perfection Products	PW8G25SEN #2	1-sided, top vent, gravity	Hayward 4	~40	25000	81%	17500
Williams	25GV-A1	1-sided, top vent, gravity	LA 104	~35	25000	100%	24500
Williams	35GV-C #1	1-sided, top vent, gravity	LA 105	~35	35000	91%	24500
Williams	35GV-C #2	1-sided, top vent, gravity	LA 106	~35	35000	91%	24500
Williams	RMG35-IN	1-sided, top vent, gravity	LA 107	~35	35000	91%	35000
Williams	5009622	2-sided, top vent, gravity	Oak SF	~15	50000	89%	26600
Holly General	35S-D #1	1-sided, top vent, gravity	Sacto 4	40+	35000	90%	17500
Holly General	35S-D #2	1-sided, top vent, gravity	Sacto 15	40+	35000	83%	17500
Williams	3509622	1-sided, top vent, gravity	Sacto 19	~10	35000	97%	24790
			Average	32	33500	89%	22990

Table 8: Retrofit Furnace Nameplate Information

Manufacturer	Model	Description	Field Sites	Age years	Rated Input Btu/hr	% Rated	Rated Output Btu/hr
Williams	1753012	direct vent, condensing	Hayward 3	0	17500	113%	16 450
Williams	1753012	direct vent, condensing	Hayward 4	0	17500	113%	28200
Williams	AC2030TN	1-sided, top vent, fan-type, AC power	LA 104	0	30000	111%	25500
Williams	AC2030TN	1-sided, top vent, fan-type, AC power	LA 105	0	30000	111%	25500
Williams	AC2030TN	1-sided, top vent, fan-type, AC power	LA 106	0	30000	111%	25500
Williams	AC2030TN	1-sided, top vent, fan-type, AC power	LA 107	0	30000	111%	34000
Williams	AC3040TN	2-sided, top vent, fan-type, AC power	Oakland SFH	0	40000	104%	24900
Williams	TG2030TN	1-sided, top vent, fan-type, self power	Sacto 4	0	30000	105%	24600
Williams	TG2030TN	1-sided, top vent, fan-type, self power	Sacto 19 T2	0	30000	105%	24600
Williams	TG2030TN	1-sided, top vent, fan-type, self power	Sacto 19	0	30000	105%	23370
			Average	ø	28500	109%	2526 0

Wall Furnace Performance Characteristics

Table 9 and Table 10 list performance characteristics of the baseline and retrofit wall furnaces as measured during laboratory testing. None of the baseline furnaces used electricity, and none of the retrofit furnaces had pilot lights. These values were used in equations 1, 2 and 3 to calculate annual energy use during a typical meteorological year, and equations 4 through 8 to calculate annual emissions.

Table 9: Baseline Furnace Energy Performance Characteristics

BASELINE V	Vall Furnace	Natur	al Gas Inpu	ıt Capacii	ty	Thermal	Efficiency	Natural Gas Output Capacity		AC Power	
Model	Field Sites	Rated Input Btu/hr	Tested Input Btu/hr	% Rated	Pilot Btu/hr	Rated TE	Tested TE	Rated Output Btu/hr	Tested Output Btu/hr	% Rated Output	Active W
PW8G25SEN	Hayward 3	25000	20280	81%	520	70.0%	76.3%	17 500	15 470	88%	0
PW8G25SEN	Hayward 4	25000	20210	81%	510	70.0%	71.8%	17500	14510	83%	0
25GV-A1	LA 104	25000	25100	100%	750	70.0%	70.5%	17 500	17700	101%	0
35GV-C #1	LA 105	35000	31720	91%	520	70.0%	62.8%	24500	19920	81%	0
35GV-C #2	LA 106	35000	31800	91%	570	70.0%	73.6%	24500	23400	96%	0
RMG35-IN	LA 107	35000	31810	91%	500	70.0%	75.1%	24500	23890	98%	0
5009622	Oak SF	50000	44500	89%	1090	76.0%	50. 1%	38000	22290	59 %	0
35S-D #1	Sacto 4	35000	31530	90%	720	50. <mark>0</mark> %	39.0%	17 500	12300	70%	0
35S-D #2	Sacto 15	35000	29110	83%	710	50. <mark>0</mark> %	60.8%	17 500	17700	101%	0
3509622	Sacto 19	35000	33800	97%	1050	74.0%	73.2%	2590 <mark>0</mark>	24740	96%	0
	Average	33500	29990	89%	690	67.0%	65.3%	224 90	19190	87 %	0

Table 10: Retrofit Furnace Energy Performance Characteristics

RETROFIT V	Wall Furnace	Natur	al Gas Inpu	ıt Capaci	ty	Thermal	Efficiency	Natural G	as Output	Capacity	AC Power
Model	Field Sites	Rated Input Btu/hr	Tested Input Btu/hr	% Rated	Pilot Btu/hr	Rated TE	Tested TE	Rated Output Btu/hr	Tested Output Btu/hr	% Rated Output	Active W
1753012	Hayward 3	17500	19790	113%	0	94%	89.5%	16450	17710	108%	100.1
1753012	Hayward 4	17500	19790	113%	0	94%	89.5%	16450	17710	108%	100.1
AC2030TN	LA 104	30000	33180	111%	0	85%	81.5%	2550 0	27040	106%	12.6
AC2030TN	LA 105	30000	33180	111%	0	85%	81.5%	2550 0	27040	106%	12.6
AC2030TN	LA 106	30000	33180	111%	0	85%	81.5%	2550 0	27040	106%	12.6
AC2030TN	LA 107	30000	33180	111%	0	85%	81.5%	2550 0	27040	106%	12.6
AC3040TN	Oakland SFH	40000	41720	104%	0	83%	79.0%	33200	32960	99%	12.4
TG2030TN	Sacto 4	30000	31410	105%	0	82%	78.5%	24600	24660	100%	0.0
TG2030TN	Sacto 19 T2	30000	31410	105%	0	82%	78.5%	24600	24660	100%	0.0
TG2030TN	Sacto 19	30000	31410	105%	0	82%	78.5%	24600	24660	100%	0.0
	Average	28500	30830	109%	0	85.7%	82.0%	24190	25050	104%	26.3

Rated input capacity of retrofit furnaces was 85% that of baseline furnaces, at 28,500 Btu/hr versus 33,500 Btu/hr. However, tested input capacity in baseline furnaces was lower than its rated value in all except one of the baseline furnaces, averaging 89% of rated input. This capacity reduction is due to long-term wear and build-up in the gas valve.

Retrofit furnace input capacity was measured to be higher than its rated input for all retrofit furnaces, averaging 109% of rated input. This means that even though rated input of retrofit furnaces was lower than the baseline rated input their actual input capacity was slightly higher, at 30,830 Btu/hr retrofit versus 29,990 Btu/hr baseline, or 103% of the baseline input capacity. Keep in mind that the retrofit wall furnaces are brand new and operating at peak capacity. It is expected that their capacity will degrade after years of operation.

On average, the tested thermal efficiency of baseline furnaces was 1.7% lower than their rated TE, 67% versus 65.3%. However, baseline furnace tested TE was extremely variable compared to rated TE. Tested TE was higher than rated TE in five furnaces, within 1% of the rating in two furnaces, and lower in three furnaces. More detailed results included in the Baseline Laboratory Testing Report show that furnaces with lower thermal efficiency tended to have higher concentrations of oxygen in their flue gases, indicating that their fuel-air ratios were no longer in good control.

Tested TE was found to be lower than rated TE for all retrofit furnaces, on average 85.7% rated versus 82.0% tested, or 3.7% lower. This may have more to do with the test method than any defect in the retrofit furnaces. In the official test method, wall furnaces are supposed to be installed into a simulated wall assembly to reflect their installation within the wall cavity of homes. Laboratory testing done for this study did not use a wall assembly, so the furnaces would have lost more heat to their surroundings, lowering their measured efficiency.

However, each retrofit furnace had significantly higher TE than the baseline furnace it replaced. Average tested TE was 82.0% for retrofit furnaces compared to 65.3% for baseline furnaces, an increase of 16.7%.

The overall effects of capacity and efficiency changes are reflected in the furnace output capacity. Compared to their rated output capacity, tested output capacity of baseline furnaces varied a lot. On average, rated output capacity was 22,490 Btu/hr versus tested 19,190 Btu/hr, so baseline furnaces achieved 87% of their rated output capacity. In contrast, all retrofit furnaces had higher tested output capacity than their rated value. On average, rated output capacity was 24,190 Btu/hr versus tested 25,050 Btu/hr, so retrofit furnaces achieved 104% of their rated output capacity.

Each retrofit furnace had higher tested output capacity than the baseline furnace it replaced, on average 19,190 Btu/hr baseline versus 25,050 Btu/hr retrofit for a 34% increase in output capacity. The effect of larger capacity is investigated in more depth later in this report.

Output capacity only reflects the energy use of furnaces when they are actively heating. The baseline furnaces also used energy to keep pilot lights on while the furnaces were not heating. Pilot energy use varied from about 500 Btu/hr to 1,000 Btu/hr, and larger capacity furnaces tended to have higher pilot energy use. The significant effects of pilot lights on annual energy use are presented later in this report.

All the retrofit furnaces eliminated the use of pilot lights, replacing standing pilots with hot surface igniters that light the burner by first heating a silicon nitride ceramic probe to 2000-2500°F. Hot surface igniters draw 2 to 4 amps at 120 V as they warm, so they need a source of electrical power. The AC2030TN, AC3040TN, and 1753012 furnaces are hooked up to an AC power source either via a wall plug or a hard-wired connection. The retrofit furnaces are all fan-type furnaces, in contrast to the baseline gravity furnaces. Electricity is used to power these retrofit furnace's fans and their control systems. The 1753012 condensing furnace used the most power using about 100 W both during active heating and during standby. The AC2030TN and AC3040TN furnaces used about 12.5 W when actively heating.

The TG2030TN furnace is self-powered, instead using a battery that recharges itself when the furnace operates. This battery powers the hot surface igniter as well as the furnace fans and control system, and its reliability is a critical to the operation of this furnace.

Wall Furnace Operating Characteristics

Before investigating wall furnace operation, a comparison of indoor temperatures during the baseline and retrofit heating seasons. This check was made make sure that the furnaces were providing the same approximate level of comfort. Figure 5 shows the average daily indoor temperature versus average daily outdoor temperature for baseline and retrofit sites. Regression equations for the baseline and retrofit sites are almost identical indicating comparable delivery of indoor comfort.

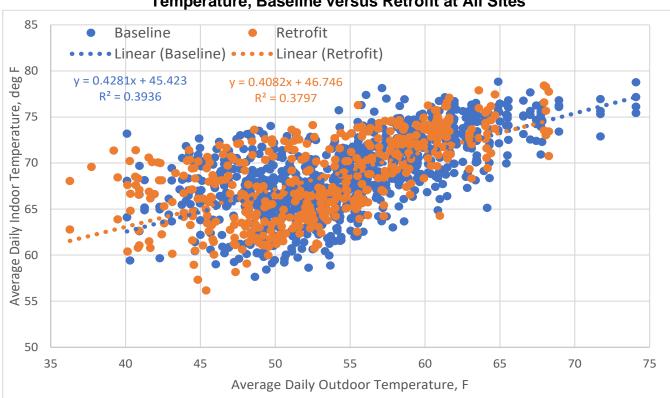


Figure 5: Average Daily Indoor Temperature versus Average Daily Outdoor Temperature, Baseline versus Retrofit at All Sites

Note that the indoor temperature was measured in just one spot at each site, on the wall near the furnace thermostat. Given that baseline furnaces are gravity furnaces and retrofit furnaces are fan-type furnaces, the distribution of heat throughout each space varied. This variation was not accounted for by a single indoor temperature measurement.

Operating characteristics of each furnace were investigated next. Hours of furnace use were tallied from field monitoring for every day of operation for each baseline and retrofit furnace. Hours of operation were plotted against average daily outdoor temperature for each furnace. The total length of each heating cycle for each furnace was also determined and regressed against average daily outdoor temperature. Finally, the number of cycles per day were calculated by dividing hours of furnace use by the average cycle length for each day.

Operating hours, minutes per cycle, and cycles per day are plotted versus average daily outdoor temperature in Figure 6, Figure 7, and Figure 8, and regression equations that describe operating hours and cycle length versus average daily outdoor temperature are summarized in Table 11.

Figure 6: Daily Operating Time versus Average Daily Outdoor Temperature for Baseline and Retrofit Wall Furnaces

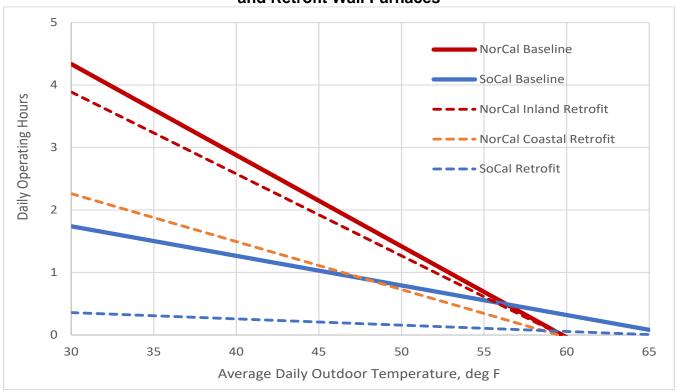


Figure 7: Cycle Length versus Average Daily Outdoor Temperature for Baseline and Retrofit Wall Furnaces

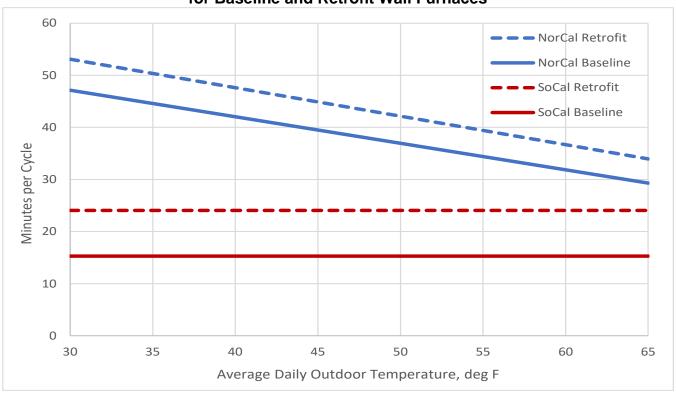
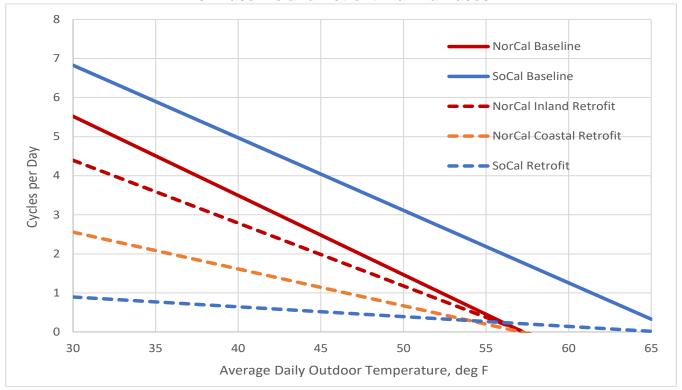



Figure 8: Cycles per Day versus Average Daily Outdoor Temperature for Baseline and Retrofit Wall Furnaces

Table 11: Daily Operating Time and Cycle Length Regression Equations

Pograssian	Condition	NorCal Inland		NorCal	Coastal	SoCal		
Regression	Condition	y-intercept	slope	y-intercept	slope	y-intercept	slope	
Daily Operating	Baseline	8.70	-0.146	8.70	-0.146	3.20	-0.0470	
Hours vs ADOT	Retrofit	7.82	-0.131	4.56	-0.077	0.662	-0.0101	
Daily Minutes per	Baseline	62.4	-0.509	62.4	-0.509	15.3	0.0	
Cycle vs ADOT	Retrofit	69.5	-0.547	69.5	-0.547	24.1	0.0	

(Colors of text correspond to colors of lines in Figure 7 and Figure 8)

Figure 6 shows some large decreases in operating hours. Operating hours for the Northern California Inland region, as measured in the Sacramento apartments, decreased about 20% from baseline to retrofit operation. Operating hours decreased about 50% from baseline to retrofit in the Northern California Coastal Hayward and Oakland locations, and about 90% in the Southern California Los Angeles region.

Figure 7 shows that the length of each cycle increased from baseline to retrofit furnace in both Northern and Southern California sites. Combining operating time and cycle length, Figure 8 shows that the number of furnace cycles per day decreased after the furnace retrofit in Southern California locations and decreased less dramatically in Northern California locations.

It should be noted again here that the output capacity of the retrofit furnaces was 34% bigger on average than the output capacity of the baseline furnaces, so the retrofit furnaces are able to heat the spaces they serve more quickly than the baseline furnaces. A reduction in operating hours is therefore expected if indoor temperatures are held constant, as they were

found to do in Figure 5. However, this reduction in hours of use was greater than expected based on capacity changes alone.

Monitoring of these units took place during the heating seasons of 2019-20, 2020-21, 2021-22 and fall/winter 2022 over different phases of the pandemic. No formal surveys of participants were made to ascertain whether their furnace operation changed in response to the pandemic, due to having more hours at home during lockdown periods, opening windows for ventilation, and/or adjusting thermostat settings to increase comfort or reduce costs.

Feedback was obtained when tenants had problems with the furnaces. We were made aware of some instances of furnaces not working properly, and these were fixed as quickly as possible. Monitoring data was removed for any days over which the furnace was known or suspected to be inoperable. According to feedback from occupants, there were three factors that contributed to a reduction in operation of the retrofit furnaces:

- First, occupants reported a lot of temperature variability when the furnaces were run at a constant setpoint. The space felt too cold before the furnace cycled on, and too hot before the furnace cycled off. The furnace controls were programmed to turn furnaces ON only after indoor temperatures were 2°F below setpoint for two minutes and turn them OFF after indoor temperatures stayed 1°F above the thermostat setpoint for one minute. New air distribution patterns from fan-type furnaces may mean the thermostat location was also not representative of room temperature. Poor furnace ON-OFF control led to general discomfort and discouraged occupants from using the furnaces as often.
- Second, occupants also reported problems with operating the furnaces manually. The thermostat took 15 to 20 seconds just to "wake up" when occupants changed settings. Along with ON-OFF lag times, this frustration with furnace response deterred occupant furnace use.
- Third, noise levels from retrofit furnaces were higher, and were reported to be unacceptably high by two of the occupants. No sound measurements were made by the project team, but they did note that double-sided AC3040TN furnace with two supply fans was especially loud. An increase in furnace noise is inevitable when switching from a gravity furnace to a fan-type furnace, but these furnaces were loud enough when operating for occupants to limit their use.

These operating problems are detailed further in the "Wall Furnace Installation and Operation Issues" section of this report.

Wall Furnace Annual Energy Use and Utility Cost Estimates

Annual energy use was estimated for all the wall furnaces based on TMY3 weather data for each field site location and based on the actual field operating characteristics reported in Table 11. Energy use is estimated assuming the pilot light stayed lit year-round in baseline furnaces. Residential average utility rates of \$19.00 per MMBtu and \$0.25 per kWh are assumed to calculate annual utility cost.

ACTUAL furnace annual operation, energy use, and utility costs are reported in Table 12: Baseline Wall Furnace TMY3 ACTUAL Annual Energy Use and Cost, including values for baseline wall furnaces, retrofit wall furnaces, and savings. This reflects how occupants used the wall furnaces during field monitoring, typical weather at each location, and performance characteristics of each furnace.

Table 12: Baseline Wall Furnace TMY3 ACTUAL Annual Energy Use and Cost

Perfection Products PW8G25SEN #1 Hayward 3 385.3 568 40.7 12.17 0 0 0 0	Table 12	wali Furnace	IMISA	CIUAL	Annuai	energy u	ise and	LOST				
Manufacturer Model Field Site hrs/year Cycles/year Minutes MMBtu/year kWh/year Util	BAS	SELINE Wall Fur	nace									
Perfection Products				Operating		Avg Cycle						
Perfection Products	Manufacturer	Model	Field Site	hrs/year	Cycles/year	Minutes	MMBtu/year	kWh/year	Utility Cost			
Williams 25GV-A1 LA 104 23.0 113 12.2 7.13 0 0 5 0 0 5 0 <t< td=""><td>Perfection Products</td><td>PW8G25SEN #1</td><td>Hayward 3</td><td>385.3</td><td>568</td><td>40.7</td><td></td><td>0 0</td><td>\$231</td></t<>	Perfection Products	PW8G25SEN #1	Hayward 3	385.3	568	40.7		0 0	\$231			
Williams 35GV-C #1 LA 105 298.0 721 24.8 13.85 0 0 Williams 35GV-C #2 LA 106 114.0 573 11.9 8,55 0 0 9 Williams RMG35-IN LA 107 23.9 94 15.3 5.13 0 0 0 Williams 5009622.0 Oakland SF 189.3 386 22.9 17.77 0 0 9 Holly General 35S-D #1 Sacto 15 262.5 515 30.6 13.67 0 0 9 Williams 3509622.0 Sacto 19 262.4 570 27.6 17.79 0 0 9 RETROFIT Wall Furnace Aug Cycle Minutes MMBtu/year MMBtu/year KWh/year Util Williams 1753012 Hayward 3 36.5 83 26.4 7.02 3.28 16.6 10.2 3.28 16.6 10.3 4.06 3.2 16.6 10.3 4.06 3.2 10.6 3.2 10.6 3.	Perfection Products	PW8G25SEN #2	Hayward 4	15 6.3	295	31.8	7.55	0 0	\$ 143			
Williams 35GV-C #2 LA 106 114.0 573 1.1.9 8,555 0 0 Williams RMG35-IN LA 107 23.9 94 15.3 5.13 0 0 Williams 5009622.0 Oakland SF 189.3 346 32.9 17.77 0 0 5 Holly General 35S-D #1 Sacto 4 170.2 237 3.1 11.55 0 0 5 Holly General 35S-D #2 Sacto 15 262.5 515 30.6 13.67 0 0 0 5 Williams 3509622.0 Sacto 19 262.4 570 27.6 17.79 0 0 5 RETROFIT Wall Furnace ACTUAL Operation - TMY3 Annual - No Standing Pilot Mylliams 1753012 Hayward 3 36.5 83 26.4 0.72 3.6 11.55 0 0 9 Wylliams AC2030TN LA 104 20.0 84 14.2 0.66 0.3 0.2 0.3 0.2 0.3 0.2 </td <td>Williams</td> <td>25GV-A1</td> <td>LA 104</td> <td>23.0</td> <td>113</td> <td></td> <td>7.13</td> <td>0 0</td> <td>\$135</td>	Williams	25GV-A1	LA 104	23.0	113		7.13	0 0	\$ 135			
Williams	Williams	35GV-C #1	LA 105	298.0	721			0 0	\$263			
Williams S009622.0 Oakland SF 189.3 346 32.5 17.77 0 0 0 6 6 6 6 6 6 6 6	Williams	35GV-C #2	LA 106	1 14.0	573		8.55	0 0	\$1 63			
Holly General 35S-D #1 Sacto 4 170.2 237 43.1 11.55 0 0 0 1 1 1 1 1 1 1	Williams	RMG35-IN	LA 107			15 .3	5.13	0 0	\$97			
Holly General 35S-D #2 Sacto 15 262.5 515 30.6 13.67 0 0 0 3 3 3 3 3 3 3 3		5009622.0	Oakland SF	189.3	346	32 .9	17.77	1	\$338			
Williams 3509622.0 Sacto 19 262.4 570 27.6 17.79 0 0 0 5 Baseline Average 188.5 417 27.1 11.52 0 0 0 5 RETROFIT Wall Furnace ACTUAL Operation - TMY3 Annual - No Standing Pilot Williams 1753012 Hayward 3 36.5 83 26.4 0.72 3.6 0.72 3.6 0.72 Williams AC2030TN LA 104 20.0 84 14.2 0.66 0.3 0.2 Williams AC2030TN LA 105 19.0 87 13.1 0.63 0.2 Williams AC2030TN LA 106 78.6 121 38.8 2.61 1.0 0.0 Williams AC3040TN Oakland SFH 178.0 240 44.5 7.43 2.2 5 Williams TG2030TN Sacto 4 128.5 223 34.5 4.03 0.0 3.0 Williams TG2030TN Sacto 19 T2 239.0 224 63.9 7.51 0.0 5 Williams TG2030TN Sacto 19 T2 239.0 224 63.9 7.51 0.0 5 Retrofit Average 118.7 208 34.3 3.70 2.4 11.45 -3.6 5 Gravity to Direct Vent Condensing Hayward 4 -9.7 26 5.2 4.26 -16.6 Gravity to Fan-Type w/AC Power LA 105 279.0 633 1.7 13.22 -0.2 5 Gravity to Fan-Type w/AC Power LA 106 35.4 451 26.9 5.95 -1.0 5 Gravity to Fan-Type w/AC Power LA 106 35.4 451 26.9 5.95 -1.0 5 TMY3 Actual Annual Savings -9.20 -0.2 5 Gravity to Fan-Type w/AC Power LA 106 35.4 451 26.9 5.95 -1.0 5 Gravity to Fan-Type w/AC Power LA 106 35.4 451 26.9 5.95 -1.0 5 Gravity to Fan-Type w/AC Power LA 106 35.4 451 26.9 5.95 -1.0 5 Gravity to Fan-Type w/AC Power LA 106 35.4 451 26.9 5.95 -1.0 5 Gravity to Fan-Type w/AC Power LA 106 35.4 451 26.9 5.95 -1.0 5 Gravity to Fan-Type w/AC Power LA 106 35.4 451 26.9 5.95 -1.0 5 Gravity to Fan-Type w/AC Power LA 106 35.4 451 26.9 5.95 -1.0 5 Gravity to Fan-Type w/AC Power LA 106 35.4 451 26.9 5.95 -1.0 5 Gravity to Fan-Type w/AC Power LA 106 35.4 451 26.9 5.95 -1.0 5 Gravity to Fan-Type w/AC Power LA 106 35.4	Holly General	35S-D #1	Sacto 4	17 <mark>0.2</mark>	237	43.1	11.55	0.0	\$219			
RETROFIT Wall Furnace	Holly General	35S-D #2	Sacto 15	262.5	515		13.67	0 0	\$260			
Namufacturer Model Field Site Minutes Minutes	Williams	3509622.0	Sacto 19	262.4	570		17.79	0 0	\$338			
Manufacturer Model Field Site Operating hrs/year Vyear Phys/year Avg Cycle Minutes MMBtu/year kWh/year WWh/year Util Williams 1753012 Hayward 3 36.5 83 26.4 0.72 3.6 0 Williams 1753012 Hayward 4 166.0 269 37.0 3.28 16.6 0 Williams AC2030TN LA 104 20.0 84 14.2 0.66 0.3 0.3 Williams AC2030TN LA 105 19.0 87 13.1 0.63 0.2 0.2 Williams AC2030TN LA 106 78.6 121 38.8 2.61 1.0 0.0 0.4 0.96 0.4 0.0			Baseline Average	188.5	417	27. 1	11.52	0 0	\$219			
Manufacturer Model Field Site hrs/year Cycles/year Minutes MMBtu/year kWh/year Util Williams 1753012 Hayward 3 36.5 83 26.4 0.72 3.6 1 Williams 1753012 Hayward 4 166.0 269 37.0 3.28 16.6 1 Williams AC2030TN LA 104 20.0 84 4.2 0.66 0.3 1 Williams AC2030TN LA 105 19.0 87 13.1 0.63 0.2 1 Williams AC2030TN LA 107 28.9 79 21.9 0.96 0.4 1 Williams AC3040TN Oakland SFH 178.0 240 44.5 7.43 2.2 3 Williams TG2030TN Sacto 4 128.5 223 34.5 4.03 0.0 3 Williams TG2030TN Sacto 19 29.8 360 48.9 9.20 0.0 3	RET	TROFIT Wall Fu	nace	AC	TUAL Opera	ation - TM\	/3 Annual - N	lo Standing	Pilot			
Williams 1753012				Operating		Avg Cycle						
Williams 1753012 Hayward 4 166.0 269 37.0 3.28 16.6 Williams AC2030TN LA 104 20.0 84 4.2 0.66 0.3 Williams AC2030TN LA 105 19.0 87 3.1 0.63 0.2 Williams AC2030TN LA 106 78.6 121 38.8 2.61 1.0 Williams AC2030TN LA 107 28.9 79 21.9 0.96 0.4 Williams AC3040TN Oakland SFH 178.0 240 44.5 7.43 2.2 3.2 Williams TG2030TN Sacto 4 128.5 223 34.5 4.03 0.0 Williams TG2030TN Sacto 19 T2 239.0 224 63.9 7.51 0.0 Williams TG2030TN Sacto 19 292.8 360 48.9 9.20 0.0 TMY3 Actual Annual Savings TMY3 Actual Annual Savings												

Based on "ACTUAL" operation retrofit furnaces saved 7.8 MMBtu a year and reduced annual utility costs by \$148 on average. Large drops in operating hours were seen at Hayward 3 and LA 105 after the retrofit furnace was installed. The Hayward 3 usage drop is at least partially due to the occupant finding the furnace noisy and difficult to operate. The LA 105 drop may be due to higher-than-normal use during the baseline period. This furnace had been inoperable prior to this study and the occupant ran it fairly constantly during the first month of monitoring.

Similar AVERAGE furnace annual operation, energy use, and utility costs are reported in Table 13, including values for baseline furnaces, retrofit furnaces, and savings. These are based on operating characteristics averaged over all baseline sites and all retrofit sites. This allows comparison between individual furnaces assuming that they are all operated for the same number of hours per year. This reflects the performance characteristics of each furnace but removes any differences due to weather or furnace operation.

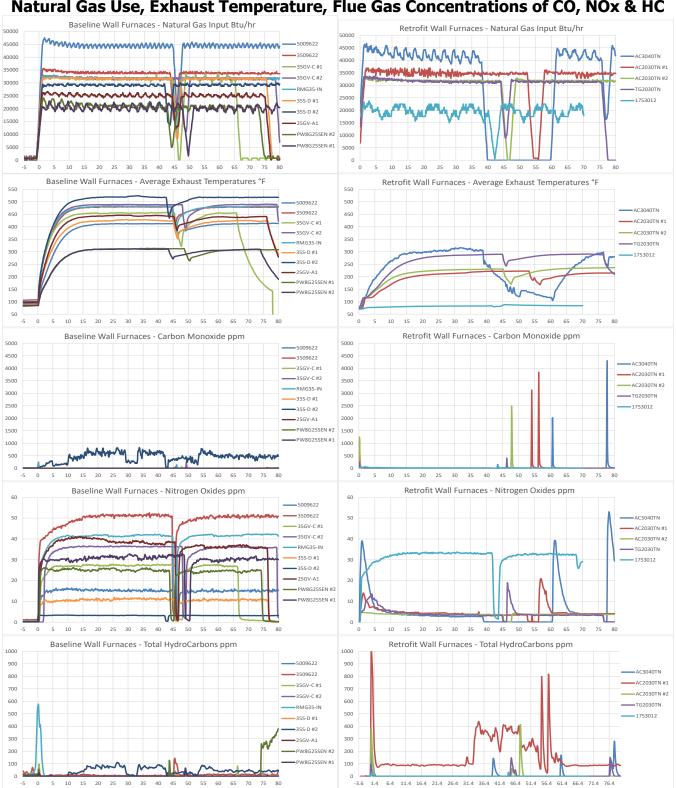

Table 13: Wall Furnace TMY3 AVERAGE Annual Energy Use and Cost

Table 13: Wall Fu	<u>irnace TMY</u>							Y3 AVERAGE Annual Energy Use and Cost AVERAGE Operation - TMY3 Annual - Pilot on All Year								
BASELINE Wall Furnac	A۱	ERAGE Oper	at	ion - TMY	3 Annual - Pil	ot on	All Ye	ar								
		Operating			Avg Cycle											
turer Model	Field Site	hrs/year	Cycles/year		Minutes	MMBtu/year		/year	Utility Cost							
'roducts PW8G25SEN #1	Hayward 3	188.5	417	Ц	27.1	8.28		0	\$1 57							
PW8G25SEN #2	Hayward 4	188.5	417	Ц	27.1	8.18		0	\$155							
ms 25GV-A1	LA 104	188.5	417	Ш	27.1	11.16		0	\$212							
ms 35GV-C #1	LA 105	188.5	417	Ш	27.1	10.44		0	\$19 <mark>8</mark>							
ms 35GV-C #2	LA 106	188.5	417	Ц	27.1	10.88		0	\$20 <mark>7</mark>							
ms RMG35-IN	LA 107	188.5	417	Ш	27.1	10.28		0	\$19 ⁵							
ms 5009622.0	Oakland SF	188.5	417	Ц	27.1	17.73		0	\$337							
neral 35S-D #1	Sacto 4	188.5	417	Н	27.1	12.11		0	\$230							
neral 35S-D #2	Sacto 15	188.5	417	Н	27.1	11.57		0	\$220							
ms 3509622.0	Sacto 19	188.5	417	Н	27.1	15.37		0	\$292							
	aseline Average	188.5	417		27.1	11.60	<u> </u>	0	\$220							
RETROFIT Wall Furnac	e	AV	ERAGE Opera	ati	on - TMY3	Annual - No	Stand	ling Pil	ot							
		Operating			Avg Cycle											
turer Model	Field Site	hrs/year	Cycles/year	L,	Minutes	MMBtu/year		/year	Utility Cost							
1753012.0	Hayward 3	118. 7	208		34.3	2.35	11.9		\$48							
1753012.0	Hayward 4	118.7	208		34.3	2.35	11.9		\$48							
AC2030TN	LA 104	118. 7	208		34.3	3.94	1.9		\$75							
AC2030TN	LA 105	118. 7	208	Ш	34.3	3.94	1.9		\$75							
AC2030TN	LA 106	118.7	208		34.3	3.94	1.9		\$75							
AC2030TN	LA 107	118. 7	208		34.3	3.94	1.9	<u> </u>	\$75							
AC3040TN	Oakland SFH	<u>118.</u> 7	208		34.3	4.95	1.5		\$94							
TG2030TN	Sacto 4	118. 7	208		34.3	3.73	0.0		\$71							
TG2030TN	Sacto 19 T2	118. 7	208		34.3	3.73	0.0		\$71							
TG2030TN	Sacto 19	118. 7	208		34.3	3.73	0.0		\$71							
	Average	118. 7	208		34.3	3.66	3.3		\$70							
	TMY3		nnual Saving				1	1								
Baseline to Retrofit Description	Field Site	Operating hrs/year	Cycles/year		Avg Cycle Minutes	MMBtu/year	kWh	/year	Utility Cost							
Gravity to Direct Vent Condensing	Hayward 3	69.7	210		-7.2	5.93		-11.9	\$110							
Gravity to Direct Vent Condensing	Hayward 4	69.7	210		-7.2	5.83		-11.9	\$108							
Gravity to Fan-Type w/AC Power	LA 104	69.7	210		-7.2	7.22		-1.9	\$ 137							
Gravity to Fan-Type w/AC Power	LA 105	69.7	210		-7.2	6.50		-1.9	\$123							
Gravity to Fan-Type w/AC Power	LA 106	69.7	210		-7.2	6.94		-1.9	\$ 131							
Gravity to Fan-Type w/AC Power	LA 107	69.7	210		-7.2	6.34		-1.9	\$120							
2-Sided Gravity to Fan-Type w/AC Power	Oakland SF	69.7	210		-7.2	12.78		-1.5	\$242							
Gravity to Fan-Type Self-Powered	Sacto 4	69.7	210		-7.2	8.38		0.0	\$1 59							
Gravity to Fan-Type Self-Powered	Sacto 15 to 19 T2		210		-7.2	7.84		0.0	\$149							
Gravity to Fan-Type Self-Powered	Sacto 19	69.7	210		-7.2	11.64		0.0	\$221							
	Savings	69.7	210		-7.2	7.94		-3.3	\$150							
	% Savings	37%	50%		-27%	68%			68%							

Wall Furnace Annual Emissions Estimates

Laboratory testing followed a protocol where the furnaces were run through two consecutive heating cycles, allowing them to reach steady-state conditions on each cycle. Figure 9 compares laboratory test results for all baseline and retrofit wall furnaces during these tests.

Figure 9: Laboratory Test Results for Baseline & Retrofit Wall Furnaces: Natural Gas Use, Exhaust Temperature, Flue Gas Concentrations of CO, NOx & HC

Plots of natural gas use during testing show when the furnaces were on and off, Gas use was measured and recorded in pulses even though the fuel use was steady, which makes the plotted line of gas use look wavy when it was steady. Baseline furnaces were rated for either 50,000 Btu/hr, 35,000 Btu/hr, or 25,000 Btu/hr, and average fuel use was about 10% lower than the rated values. Retrofit furnaces were rated for 40,000 Btu/hr, 30,000 Btu/hr, or 17,500 Btu/hr and actual fuel use was on average 10% higher than rated. Some trouble relighting the AC3040TN 40,000 Btu/hr retrofit furnace (blue line) can be seen in its fuel use and exhaust temperature.

Exhaust temperature shows when steady-state conditions were reached for each furnace. Higher exhaust temperature also indicates a wall furnace with lower thermal efficiency since more heat is being sent up the flue. The 1753012 condensing retrofit furnace (turquoise line) has very low exhaust temperature because it captures heat from exhaust gases to increase the furnace's efficiency.

Both carbon monoxide and hydrocarbon emissions generally show puffs of higher concentration at startup and shutdown of the wall furnaces which are relatively small for baseline furnaces, and distinctively higher for retrofit furnaces. There are two notable differences in the test data: 1) baseline furnace 35S-D #2's high sustained CO and HC concentrations (dark blue line) are indicative of very poor combustion; 2) retrofit furnace AC2030TN #1's high HC concentration (red line) which denotes a small natural gas leak either at the gas connection or within the unit.

While these high concentration puffs look dramatic, it is important to remember that they do not automatically translate to high emissions. The baseline furnaces had standing pilots with gas input rates of 500 to 1,000 Btu/hr, and retrofit furnaces had a standby gas input rate of zero (except for the leak with 1753012). This means exhaust gases are flowing very slowly, if at all, so the actual emission rates are low at startup and shutdown.

The higher CO and HC startup and shutdown concentrations of the retrofit furnaces are notable. However, these higher concentrations are likely due to the lack of a pilot light that would burn more of the natural gas emissions during control valve opening and closing. Emission rates were averaged from laboratory data for standby, startup, steady state, and shutdown modes of operation. Laboratory tested flue gas emission rates, in lbm/MMBtu, are listed in Table 14 Table 15, and Table 16 for baseline furnaces and Table 17, Table 18, and Table 19 for retrofit furnaces.

Table 14: Carbon Monoxide Emissions from Baseline Wall Furnaces

W	all Furnace Teste	d	d 3 0,459 0.005 0.001 0.314 d 4 0.078 0.002 0.019 0.178 0.253 0.002 0.001 0.271 0.190 0.018 0.063 0.175 0.105 0.010 0.001 0.057 0.183 0.012 0.001 0.059 1 SF 0.809 0.008 0.002 0.261 ento 4 0.166 0.004 0.002 0.072 ento 15 0.000 0.880 1.194 1.065			
Manufacturer	Model	Field Sites	Standby	Startup	Steady State	Shutdown
Perfection Products	PW8G25SEN #1	Hayward 3	0.459	0.005	0.001	0.314
Perfection Products	PW8G25SEN #2	Hayward 4	0.078	0.002	0.019	0.178
Williams	25GV-A1	LA 104	0.253	0.002	0.001	0.271
Williams	35GV-C #1	LA 105	0.190	0.018	0.063	0.175
Williams	35GV-C #2	LA 106	0.105	0.010	0.001	0.057
Williams	RMG35-IN	LA 107	0.183	0.012	0.001	0.059
Williams	5009622	Oakland SF	0.809	0.008	0.002	0.261
Holly General	35S-D #1	Sacramento 4	0.166	0.004	0.002	0.072
Holly General	35S-D #2	Sacramento 15	0.000	0.880	1.194	1.065
Williams	3509622	Sacramento 19	0.122	0.006	0.001	0.064
		Average	0.237	0.095	0.128	0.251

Table 15: Nitrogen Oxide Emissions from Baseline Wall Furnaces

W	all Furnace Teste	d	Nit	rogen Oxide	es, lbm/MMB	tu
Manufacturer	Model	Field Sites	Standby	Startup	Steady State	Shutdown
Perfection Products	PW8G25SEN #1	Hayward 3	0.049	0.102	0.105	0.125
Perfection Products	PW8G25SEN #2	Hayward 4	0.021	0.095	0.133	0.309
Williams	25GV-A1	LA 104	0.009	0.105	0.108	0.890
Williams	35GV-C #1	LA 105	0.038	0.073	0.113	0.414
Williams	35GV-C #2	LA 106	0.032	0.076	0.071	0.061
Williams	RMG35-IN	LA 107	0.045	0.081	0.084	0.091
Williams	5009622	Oakland SF	0.037	0.103	0.106	0.077
Holly General	35S-D #1	Sacramento 4	0.036	0.088	0.093	0.045
Holly General	35S-D #2	Sacramento 15	0.028	0.012	0.012	0.031
Williams	3509622	Sacramento 19	0.058	0.115	0.121	0.107
		Average	0.035	0.085	0.095	0.215

Table 16: Total Hydrocarbon Emissions from Baseline Wall Furnaces

W	all Furnace Teste	d	Tota	al Hydrocarb	ons, lbm/MM	lBtu
Manufacturer	Model	Field Sites	Standby	Startup	Steady State	Shutdown
Perfection Products	PW8G25SEN #1	Hayward 3	0.126	0.001	0.000	1.889
Perfection Products	PW8G25SEN #2	Hayward 4	0.383	0.002	0.642	6.767
Williams	25GV-A1	LA 104	0.558	0.001	0.000	0.003
Williams	35GV-C #1	LA 105	0.012	0.001	0.009	0.097
Williams	35GV-C #2	LA 106	0.000	0.000	0.000	0.140
Williams	RMG35-IN	LA 107	0.448	0.025	0.000	0.000
Williams	5009622	Oakland SF	0.000	0.014	0.004	0.586
Holly General	35S-D #1	Sacramento 4	0.000	0.009	0.004	0.161
Holly General	35S-D #2	Sacramento 15	0.000	0.047	0.075	0.140
Williams	3509622	Sacramento 19	0.287	0.023	0.007	0.939
		Average	0.181	0.012	0.074	1.072

Table 17: Carbon Monoxide Emissions from Retrofit Wall Furnaces

Wall Furnace Tested	1	Carbon Monoxide, lbm/MMBtu						
Model	Field Sites	Standby	Startup	Steady State	Shutdown			
1753012 (condensing direct vent)	Hayward 3 & 4	1.093	0.027	0.017	0.023			
AC2030TN #1 (single-sided low NOx)	LA 104-107	0.620	0.045	0.001	3.106			
AC2030TN #2 (single-sided low NOx)	LA 104-107	2.216	0.183	0.002	0.681			
AC3040TN (double-sided low NOx)	Oakland SFH	0.230	0.145	0.348	0.048			
TG2030TN (self-powered low NOx)	Sacto 4, 19	0.075	0.042	0.012	0.041			
	Average	0.846	0.088	0.076	0.780			

Table 18: Nitrogen Oxide Emissions from Retrofit Wall Furnaces

Wall Furnace Tested	k	Nitrogen Oxides, lbm/MMBtu					
Model	Field Sites	Standby	Startup	Steady State	Shutdown		
1753012 (condensing direct vent)	Hayward 3 & 4	0.178	0.083	0.089	0.266		
AC2030TN #1 (single-sided low NOx)	LA 104-107	0.027	0.018	0.012	0.019		
AC2030TN #2 (single-sided low NOx)	LA 104-107	0.030	0.012	0.012	0.015		
AC3040TN (double-sided low NOx)	Oakland SFH	0.077	0.032	0.043	0.032		
TG2030TN (self-powered low NOx)	Sacto 4, 19	0.039	0.014	0.013	0.016		
	Average	0.070	0.031	0.034	0.069		

Table 19: Total Hydrocarbon Emissions from Retrofit Wall Furnaces

Wall Furnace Tested		Total Hydrocarbons, lbm/MMBtu					
Model	Field Sites	Standby	Startup	Steady State	Shutdown		
1753012 (condensing direct vent)	Hayward 3 & 4	0.004	0.003	0.000	0.000		
AC2030TN #1 (single-sided low NOx)	LA 104-107	0.171	0.160	0.258	1.499		
AC2030TN #2 (single-sided low NOx)	LA 104-107	0.008	0.013	0.000	0.597		
AC3040TN (double-sided low NOx)	Oakland SFH	0.004	0.013	0.026	1.386		
TG2030TN (self-powered low NOx)	Sacto 4, 19	0.002	0.004	0.032	1.144		
	Average	0.038	0.038	0.063	0.925		

ACTUAL furnace annual carbon monoxide, nitrogen oxides, and total hydrocarbon emissions are reported in Table 20

Table 20 for baseline wall furnaces, retrofit furnaces, and the savings from retrofits. This data reflects how occupants used the wall furnaces during field monitoring, typical weather at each location, and performance characteristics of each furnace. ACTUAL carbon monoxide emissions are estimated to decrease on average by 2.33 pounds per year or 90%; nitrogen oxides emissions decreased by 0.66 pounds per year or 89%; and total hydrocarbon emissions decreased by 1.13 pounds per year or 94%.

Table 20: Wall Furnace TMY3 ACTUAL Annual Emissions

BAS	SELINE Wall Furi		ACTUAL Operation - TMY3 Annual - Pilot on All Year								
5710			Operating	- С. С. С. С. С. С.	Avg Cycle			- Cui			
Manufacturer	Model	Field Site	hrs/year	Cycles/year	Minutes	CO lbm/year	NOx lbm/year	THC lbm/year			
Perfection Products	PW8G25SEN #1	Hayward 3	385.3	568	40.7	2.02	1.02	0.58			
Perfection Products	PW8G25SEN #2	Hayward 4	156.3	295	31.8	0.37	0.43	2.57			
Williams	25GV-A1	LA 104	23.0	113	12.2	1.66	0.12	3.66			
Williams	35GV-C #1	LA 105	298.0	721	24.8	1.13	0.97	0.07			
Williams	35GV-C #2	LA 106	114.0	573	11.9	0.55	0.43	0.00			
Williams	RMG35-IN	LA 107	23.9	94	15 .3	0.81	0.26	1.9 <mark>8</mark>			
Williams	5009622.0	Oakland SF	189.3	346	32 .9	7.61	1.22	0.10			
Holly General	35S-D #1	Sacto 4	17 <mark>0.2</mark>	237	43.1	1.04	0.71	0.04			
Holly General	35S-D #2	Sacto 15	262.5	515	30 .6	7.57	0.26	0.36			
Williams	3509622.0	Sacto 19	262.4	570	27. 6	1.12	1.56	2.74			
		Baseline Average	188.5	417	27. 1	2.39	0.70	1.21			
RET	ROFIT Wall Furi	nace	A	CTUAL Ope	ration - TN	IY3 Annual - I	No Standing I	Pilot			
			Operating		Avg Cycle						
Manufacturer	Model	Field Site	hrs/year	Cycles/year	Minutes	CO lbm/year	NOx lbm/year	THC lbm/year			
Williams	1753012	Hayward 3	36.5	83	26. 4	0.02	0.06	0.00			
Williams	1753012	Hayward 4	16 <mark>6.0</mark>	269	37 .0	0.07	0.28	0.01			
Williams	AC2030TN	LA 104	20.0	84	14.2	0.08	0.01	0.06			
	AC2030TN	LA 105	19.0	87	13.1	0.07	0.01	0.06			
	AC2030TN	LA 106	78.6	121	38.8	0.22	0.04	0.24			
	AC2030TN	LA 107	28.9	79	21.9	0.11	0.01	0.08			
	AC3040TN	Oakland SFH	17 <mark>8.0</mark>	240	44.5	2.04	0.29	0.15			
	TG2030TN	Sacto 4	1 <mark>28.5</mark>	223	34.5	0.14	0.05	0.02			
	TG2030TN	Sacto 19 T2	239.0	224	63.9	0.19	0.10	0.12			
Williams	TG2030TN	Sacto 19	292.8	360	48.9	0.26	0.12	0.10			
		Retrofit Average	118.7	208	34.3	0.32	0.10	0.08			
		TMY3		ual Savings			1				
Baseline to Retrofit De	scrintion	Field Site	Operating hrs/year	Cycles/year	Avg Cycle Minutes	CO lbm/year	NOx lbm/year	THC lbm/vear			
Gravity to Direct Ven	•	Hayward 3	348.8	485	14.4	2.01	0.96	0.58			
Gravity to Direct Ven	t Condensing	Hayward 4	-9.7	26	-5.2	0.30	0.15	2.56			
Gravity to Fan-Type v		LA 104	3.0	29	2.0	1.58	0.11	3.60			
Gravity to Fan-Type v	v/AC Power	LA 105	279.0	633	11.7	1.05	0.96	0.01			
Gravity to Fan-Type v	v/AC Power	LA 106	35.4	451	26.9	0.34	0.40	-0.23			
Gravity to Fan-Type v	v/AC Power	LA 107	-5.0	14	6.6	0.70	0.24	1.89			
2-Sided Gravity to Fa	n-Type w/AC Pow	Oakland SF	11.3	106	11.6	5.57	0.93	-0.05			
Gravity to Fan-Type S	Self-Powered	Sacto 4	41.7	13	8.6	0.90	0.65	0.02			
Gravity to Fan-Type S	Self-Powered	Sacto 15 to 19 T2	23.4	291	33.4	7.39	0.16	0.24			
Gravity to Fan-Type S	Self-Powered	Sacto 19	-30.4	210	21.2	0.86	1.44	2.64			
		Savings	69.7	226	18 .5	2.07	0.60	1.12			
		% Savings	37%	54%	68%	87%	86%	93%			

Similar AVERAGE furnace annual carbon monoxide, nitrogen oxides, and total hydrocarbon emissions are reported in Table 21 for furnaces based on operating characteristics averaged over all baseline sites and all retrofit sites. This reflects the performance characteristics and weather for each furnace but removes any individual differences due furnace operation.

Table 21: Wall Furnace TMY3 AVERAGE Annual Emissions

RΔS	ELINE Wall Furnace		AVERAGE Operation - TMY3 Annual - Pilot on All Year									
BAS			Operating			Avg Cycle	- CAIIIIIIII - T		w.			
Manufacturer	Model	Field Site	hrs/year	Cycles/year		Minutes	CO lbm/year	NOx lbm/year	THC lbm/year			
Perfection Products	PW8G25SEN #1	Hayward 3	188.5	417		27.1	2.06	0.61	0.58			
Perfection Products	PW8G25SEN #2	Hayward 4	188.5	417		27.1	0.36	0.48	2.51			
Williams	25GV-A1	LA 104	188.5	417		27.1	1.64	0.57	3.59			
Williams	35GV-C #1	LA 105	188.5	417		27.1	1.05	0.69	0.07			
Williams	35GV-C #2	LA 106	188.5	417		27.1	0.55	0.60	0.00			
Williams	RMG35-IN	LA 107	188.5	417		27.1	0.83	0.69	2.02			
Williams	5009622.0	Oakland SF	188.5	417		27.1	7.61	1.22	0.11			
Holly General	35S-D #1	Sacto 4	188.5	417		27.1	1.05	0.75	0.05			
Holly General	35S-D #2	Sacto 15	188.5	417		27.1	5.29	0.24	0.26			
Williams	3509622.0	Sacto 19	188.5	417		27.1	1.12	1.27	2.71			
	Ва	aseline Average	188.5	417		27.1	2.16	0.71	1.19			
RET	ROFIT Wall Furnace	2	A'	VERAGE Ope	ra	tion - TMY	3 Annual - N	o Standing Pi	ot			
			Operating			Avg Cycle						
Manufacturer	Model	Field Site	hrs/year	Cycles/year	L,	Minutes		NOx lbm/year	1			
Williams	1753012.0	Hayward 3	118.7	208		34.3	0.05	0.20	0.00			
Williams	1753012.0	Hayward 4	118.7	208		34.3	0.05	0.20	0.00			
Williams	AC2030TN	LA 104	118.7	208		34.3	0.37	0.06	0.34			
Williams	AC2030TN	LA 105	118.7	208		34.3	0.37	0.06	0.34			
Williams	AC2030TN	LA 106	118.7	208		34.3	0.37	0.06	0.34			
Williams	AC2030TN	LA 107	118.7	208		34.3	0.37	0.06	0.34			
Williams	AC3040TN	Oakland SFH	118.7	208		34.3	1.25	0.19	0.08			
Williams	TG2030TN	Sacto 4	118.7	208		34.3	0.13	0.05	0.01			
Williams	TG2030TN	Sacto 19 T2	118.7	208		34.3	0.13	0.05	0.01			
Williams	TG2030TN	Sacto 19	118.7	208		34.3	0.13	0.05	0.01			
		Average	118.7	208		34.3	0.32	0.10	0.15			
		TMY		Annual Savin	_			Г				
Baseline to Retrofit De	escription	Field Site	Operating hrs/year	Cycles/year		Avg Cycle Minutes	CO lbm/year	NOx lbm/year	THC lbm/year			
Gravity to Direct Ven	•	Hayward 3	69.7	210		-7.2	2.01	0.41	0.58			
Gravity to Direct Ven	<u> </u>	Hayward 4	69.7	210	Ħ	-7.2	0.31	0.28	2.50			
Gravity to Fan-Type		LA 104	69.7	210	Ī	-7.2	1.27	0.52	3.25			
Gravity to Fan-Type	w/AC Power	LA 105	69.7	210	Ī	-7.2	0.68	0.64	-0.27			
Gravity to Fan-Type		LA 106	69.7	210	ا	-7.2	0.18	0.54	-0.34			
Gravity to Fan-Type		LA 107	69.7	210		-7.2	0.47	0.63	1.68			
2-Sided Gravity to Fa	n-Type w/AC Power	Oakland SF	69.7	210		-7.2	6.36	1.03	0.03			
Gravity to Fan-Type	Self-Powered	Sacto 4	69.7	210		-7.2	0.91	0.70	0.04			
Gravity to Fan-Type	Self-Powered	Sacto 15 to 19 T2	69.7	210		-7.2	5.16	0.19	0.24			
Gravity to Fan-Type	Self-Powered	Sacto 19	69.7	210		-7.2	0.99	1.22	2.70			
		Savings	69.7	210		-7.2	1.83	0. <mark>62</mark>	1.04			
		% Savings	37%	50%		-27%	85%	86%	88%			

Effect of Standing Pilot Operation

Energy use and emissions estimates for baseline furnaces made previously in this report assumed that the standing pilot was left on all year at all sites. Estimates of energy and emissions savings are made for the scenario where the pilot is shut off for six months of the year when the furnace was not needed for heat. Table 22, Table 23, and Table 24 show that turning off the pilot for half the year on baseline furnaces reduces annual natural gas use by 3.04 MMBtu or 26% and saves \$58 a year, while installing retrofit furnaces reduces natural gas use by 7.81 MMBtu or 68% and saves \$148 a year.

Table 22: Baseline Wall Furnace Energy Use with Pilot On All Year

BASELINE Wall Fur	nace			<u> </u>		Pilot on All Year			
			Operating	Input	Pilot	Total Heating F		Pilot	Annual
Manufacturer	Model	Field Site	hrs/year	Btu/hr	Btu/hr	MMBtu/year	%	%	Energy Cost
Perfection Products	PW8G25SEN #1	Hayward 3	385.3	20,280	5 <mark>2</mark> 0	12.17	64%	36%	\$231
Perfection Products	PW8G25SEN #2	Hayward 4	156.3	20,210	5 <mark>10</mark>	7.55	42%	58%	\$ <mark>143</mark>
Williams	25GV-A1	LA 104	23.0	25, 100	750	7.13	8%	92%	\$135
Williams	35GV-C #1	LA 105	298.0	31,720	5 <mark>2</mark> 0	13.85	68%	32%	\$263
Williams	35GV-C #2	LA 106	114.0	31,800	570	8.55	42%	58%	\$1 63
Williams	RMG35-IN	LA 107	23.9	31,810	5 <mark>00</mark>	5.13	15%	85%	\$97
Williams	5009622	Oakland SF	189.3	44,500	1090	17.77	47%	53%	\$338
Holly General	35S-D #1	Sacramento 4	170.2	31,530	720	11.55	46%	54%	\$219
Holly General	35S-D #2	Sacramento 15	262.5	29,110	710	13.67	56%	44%	\$260
Williams	3509622	Sacramento 19	262.4	33,800	1050	17.79	50%	50%	\$338
		Baseline Average	188.5	29,990	690	11.52	49%	51%	\$219

Table 23: Baseline Wall Furnace Energy Use with Pilot On Half the Year

BASELINE WALL FURNACES							Pilot on for Half the Year				
			Operating	Input	Pilot	Total	Heating	Pilot	Annual		
Manufacturer	Model	Field Sites	hrs/year	Btu/hr	Btu/hr	MMBtu/year	%	%	Energy Cost		
Perfection Products	PW8G25SEN #1	Hayward 3	385.3	20,280	5 <mark>2</mark> 0	9.89	79 <mark>%</mark>	21%	\$188		
Perfection Products	PW8G25SEN #2	Hayward 4	156.3	20,210	5 <mark>10</mark>	5.31	59%	41%	\$101		
Williams	25GV-A1	LA 104	23.0	25,100	750	3.84	15%	85%	\$73		
Williams	35GV-C #1	LA 105	298.0	31,720	5 <mark>2</mark> 0	11.57	82%	18%	\$220		
Williams	35GV-C #2	LA 106	114.0	31,800	57 0	6.06	60%	40%	\$1 15		
Williams	RMG35-IN	LA 107	23.9	31,810	5 <mark>00</mark>	2.94	26%	74%	\$56		
Williams	5009622	Oakland SF	189.3	44,500	1090	12.99	65%	35%	\$247		
Holly General	35S-D #1	Sacramento 4	170.2	31,530	720	8.40	64%	36%	\$160		
Holly General	35S-D #2	Sacramento 15	262.5	29,110	710	10.56	72%	28%	\$201		
Williams	3509622	Sacramento 19	262.4	33,800	1050	13.19	67%	33%	\$251		
Baseline Average			188.5	29,990	690	8.48	67%	34%	\$161		

Table 24: Retrofit Wall Furnace Energy Use with No Standing Pilot

						No Standing Pilot			
Manufacturer	Model	Field Site	Operating hrs/year	Input Btu/hr	Pilot Btu/hr	Total MMBtu/year	Heating %	Pilot %	Annual Energy Cost
Williams	1753012	Hayward 3	36.5	19,790	•	0.72	100%	0%	\$15
Williams	1753012	Hayward 4	166.0	19,790	-	3.28	100%	0%	\$67
Williams	AC2030TN	LA 104	20.0	33,180	•	0.66	100%	0%	\$13
Williams	AC2030TN	LA 105	19.0	33,180	-	0.63	100%	0%	\$12
Williams	AC2030TN	LA 106	78.6	33,180	-	2.61	100%	0%	\$50
Williams	AC2030TN	LA 107	28.9	33,180	-	0.96	100%	0%	\$18
Williams	AC3040TN	Oakland SFH	178.0	41,720	-	7.43	100%	0%	\$ <mark>142</mark>
Williams	TG2030TN	Sacramento 4	12 8.5	31,410	-	4.03	100%	0%	\$77
Williams	TG2030TN	Sacramento 19 T2	239.0	31,410	-	7.51	100%	0%	\$ <mark>143</mark>
Williams	TG2030TN	Sacramento 19	292.8	31,410	1	9.20	100%	0%	\$1 <mark>75</mark>
		Retrofit Average	118.7	30,830	-	3.70	100%	0%	\$71

Table 25, Table 26, and Table 27 show that turning off the pilot for half the year on baseline furnaces reduces carbon monoxide, nitrogen oxides, and total hydrocarbon emissions by 0.81 lbm per year or 34%, 0.11 lbm per year or 16%, and 0.53 lbm per year or 44% respectively, but replacing baseline furnaces with retrofit furnaces reduces emissions by 86% or more.

Table 25: Baseline Wall Furnace Emissions with Pilot On All Year

BASELINE Wall Furnace			ACTUAL Operation - TMY3 Annual - Pilot on All Year						
Manufacturer	Model	Field Site	Operating hrs/year	Cycles/year	Avg Cycle Minutes	CO lbm/year	NOx lbm/year	THC lhm/year	
Perfection Products	PW8G25SEN #1	Hayward 3	385.3	568	40.7	2.02	1.02	0.58	
Perfection Products	PW8G25SEN #2	Hayward 4	156.3	295	31.8	0.37	0.43	2.57	
Williams	25GV-A1	LA 104	23.0	113	12.2	1.66	0.12	3.66	
Williams	35GV-C #1	LA 105	298.0	721	24.8	1.13	0.97	0.07	
Williams	35GV-C #2	LA 106	114.0	573	11.9	0.55	0.43	0.00	
Williams	RMG35-IN	LA 107	23.9	94	15.3	0.81	0.26	1.98	
Williams	5009622.0	Oakland SF	189.3	346	32.9	7.61	1.22	0.10	
Holly General	35S-D #1	Sacramento 4	17 0.2	237	43.1	1.04	0.71	0.04	
Holly General	35S-D #2	Sacramento 15	262.5	515	30.6	7.57	0.26	0.36	
Williams	3509622.0	Sacramento 19	262.4	570	27.6	1.12	1.56	2.74	
	Baseline Average				27.1	2.39	0.70	1.21	

Table 26: Baseline Wall Furnace Emissions with Pilot On Half the Year

BASELIN	ACTUAL Operation - TMY3 Annual - Pilot on for Half the Year							
Manufacturer	Model	Field Sites	Operating hrs/year	Cycles/year	Avg Cycle Minutes	CO lbm/year	NOx lbm/year	THC lbm/year
Perfection Products	PW8G25SEN #1	Hayward 3	385.3	568	40.7	0.98	0.91	0.29
Perfection Products	PW8G25SEN #2	Hayward 4	1 56.3	295	31.8	0.19	0.38	1.71
Williams	25GV-A1	LA 104	23.0	113	12.2	0.83	0.09	1.82
Williams	35GV-C #1	LA 105	298.0	721	24.8	0.69	0.88	0.04
Williams	35GV-C #2	LA 106	114.0	573	11.9	0.29	0.35	0.00
Williams	RMG35-IN	LA 107	23.9	94	15.3	0.41	0.16	0.99
Williams	5009622	Oakland SF	189.3	346	32.9	3.74	1.05	0.10
Holly General	35S-D #1	Sacramento 4	170.2	237	43.1	0.52	0.59	0.04
Holly General	35S-D #2	Sacramento 15	262.5	515	30.6	7.57	0.17	0.36
Williams	3509622	Sacramento 19	262.4	570	27.6	0.56	1.30	1.42
Baseline Average			18 8.5	417	27.1	1.58	0.59	0.68

Table 27: Retrofit Wall Furnace Emissions with No Standing Pilot

· '	Table 27. Netront Wan I difface Emissions with No Standing I not											
F	RETROFIT Wall Furnace				ACTUAL Operation - TMY3 Annual - No Standing Pilot							
					Avg Cycle							
Manufacturer	Model	Field Site	hrs/year	Cycles/year	Minutes	CO lbm/year	NOx lbm/year	THC lbm/year				
Williams	1753012.0	Hayward 3	36.5	83	26.4	0.02	0.06	0.00				
Williams	1753012.0	Hayward 4	16 6.0	269	37.0	0.07	0.28	0.01				
Williams	AC2030TN	LA 104	20.0	84	14.2	0.08	0.01	0.06				
Williams	AC2030TN	LA 105	19.0	87	13.1	0.07	0.01	0.06				
Williams	AC2030TN	LA 106	78.6	121	38. 8	0.22	0.04	0.24				
Williams	AC2030TN	LA 107	28.9	79	21.9	0.11	0.01	0.08				
Williams	AC3040TN	Oakland SFH	17 8.0	240	44.5	2.04	0.29	0.15				
Williams	TG2030TN	Sacto 4	1 <mark>28.5</mark>	223	34.5	0.14	0.05	0.02				
Williams	TG2030TN	Sacto 19 T2	239.0	224	63.9	0.19	0.10	0.12				
Williams	TG2030TN	Sacto 19	292.8	360	48.9	0.26	0.12	0.10				
	Retrofit Average				34 .3	0.32	0.10	0.08				

Finally, to look at emissions on an energy use basis, Table 28, Table 29, and Table 30 present emissions per unit of natural gas. Turning off the pilot on baseline furnaces for half the year reduces emissions during standby periods, and reduces emissions of carbon monoxide and total hydrocarbons, but increases nitrogen oxide emissions per unit per unit of natural gas. Nitrogen oxygen emissions of the baseline furnaces are high compared to the regulated limit of 0.033 lbm/MMBtu for central furnaces, (SCAQMD 2021, SJVAPCD 2020), even when the standing pilot is off for half the year. Retrofit furnace emissions per unit of natural gas are reduced by 45% or more compared to baseline furnaces.

Table 28: Baseline Wall Furnace Emissions per Gas Unit with Pilot On All Year

BA	SELINE Wall Furnace		ACTUAL Operation - TMY3 Annual - Pilot on All Year										
Manufacturer	Model	Field Site	Operating hrs/year	Cycles/year	Avg Cycle Minutes	MMBtu/year	CO lbm/MMBtu	NOx lbm/MMBtu	THC lbm/MMBtu				
Perfection Products	PW8G25SEN #1	Hayward 3	385.3	568	40.7	12.17	0.166	0.084	0.047				
Perfection Products	PW8G25SEN #2	Hayward 4	156.3	295	31.8	7.55	0.049	0.057	0.340				
Williams	25GV-A1	LA 104	23.0	113	12.2	7.13	0.233	0.017	0.513				
Williams	35GV-C #1	LA 105	298.0	721	24.8	13.85	0.081	0.070	0.005				
Williams	35GV-C #2	LA 106	114.0	573	11.9	8.55	0.065	0.051	0.000				
Williams	RMG35-IN	LA 107	23.9	94	15.3	5.13	0.158	0.050	0.385				
Williams	5009622.0	Oakland SF	189.3	346	32.9	17.77	0.428	0.069	0.005				
Holly General	35S-D #1	Sacramento 4	170.2	237	43.1	11.55	0.090	0.061	0.003				
Holly General	35S-D #2	Sacramento 15	262.5	515	30.6	13.67	0.554	0.019	0.026				
Williams	3509622.0	Sacramento 19	262.4	570	27.6	17.79	0.063	0.088	0.154				
	Е	188.5	417	27.1	11.52	0.207	0.061	0.105					

Table 29: Baseline Wall Furnace Emissions per Gas Unit with Pilot On Half the Year

BASELIN	E Wall Furnace T	ested		ACTUAL (Operation -	TMY3 Annual	- Pilot on for	Half the Year	
Manufacturer	Model	Field Sites	Operating hrs/year	'		NOx Ibm/MMBtu	THC lbm/MMBtu		
Perfection Products	PW8G25SEN #1	Hayward 3	385.3	568	40.7	9.890	0.099	0.092	0.029
Perfection Products	PW8G25SEN #2	Hayward 4	156.3	295	31.8	5.312	0.036	0.072	0.322
Williams	25GV-A1	LA 104	23.0	113	12.2	3.844	0.216	0.024	0.474
Williams	35GV-C #1	LA 105	298.0	721	24.8	11.575	0.060	0.076	0.003
Williams	35GV-C #2	LA 106	114.0	573	11.9	6.057	0.048	0.058	0.000
Williams	RMG35-IN	LA 107	23.9	94	15.3	2.939	0.139	0.054	0.338
Williams	5009622	Oakland SF	18 <mark>9.3</mark>	346	32.9	12.992	0.288	0.081	0.007
Holly General	35S-D #1	Sacramento 4	170.2	237	43.1	8.396	0.062	0.071	0.004
Holly General	35S-D #2	Sacramento 15	262.5	515	30.6	10.564	0.717	0.016	0.034
Williams	3509622	Sacramento 19	262.4	570	27.6	13.193	0.042	0.098	0.107
	18 <mark>8.5</mark>	417	27.1	8.476	0.186	0.070	0.080		

Table 30: Retrofit Wall Furnace Emissions per Gas Unit with No Standing Pilot

RE	TROFIT Wall Furna	ice	ACTUAL Operation - TMY3 Annual - No Standing Pilot										
Manufacturer	Model	Field Site	Operating hrs/year	Cycles/year	Avg Cycle Minutes	MMBtu/year	CO lbm/MMBtu	NOx lbm/MMBtu	THC lbm/MMBtu				
Williams	1753012.0	Hayward 3	36.5	83	26.4	0.72	0.023	0.085	0.002				
Williams	1753012.0	Hayward 4	166.0	269	37.0	3.28	0.021	0.086	0.002				
Williams	AC2030TN	LA 104	20.0	84	14.2	0.66	0.118	0.015	0.088				
Williams	AC2030TN	LA 105	19.0	87	13.1	0.63	0.119	0.015	0.089				
Williams	AC2030TN	LA 106	78.6	121	38.8	2.61	0.083	0.014	0.091				
Williams	AC2030TN	LA 107	28.9	79	21.9	0.96	0.117	0.015	0.088				
Williams	AC3040TN	Oakland SFH	178.0	240	44.5	7.43	0.275	0.039	0.020				
Williams	TG2030TN	Sacto 4	128.5	223	34.5	4.03	0.036	0.013	0.005				
Williams	TG2030TN	Sacto 19 T2	239.0	224	63.9	7.51	0.025	0.013	0.016				
Williams	TG2030TN	Sacto 19	292.8	360	48.9	9.20	0.029	0.013	0.011				
	_	Retrofit Average	118.7	208	34.3	3.70	0.084	0.031	0.041				

Indoor Air Quality Improvements from Retrofit Furnaces

Concentrations of carbon monoxide, nitrogen oxides, and particulate matter were recorded at all sites during field monitoring of furnace and retrofit furnaces. Table 31 and Table 32 show overall average and maximum IAQ concentrations for all furnaces while they were on and actively heating as well as when the furnaces were off between heating cycles.

Table 31: Average IAQ Concentrations
Baseline and Retrofit Furnaces Off and On

AVERAGES Field	CO Off	CO On	NOx Off	NOx On	PM2.5 Off		PM10 Off	PM10 On
Site	ppmx10	ppmx10	ppb/10	ppb/10	ug/m3	ug/m3	ug/m3	ug/m3
Hayward 3	23 .5	23.4	32.3	30. 9	6.0	3.0	6.5	0.1
Hayward 4	9.8	12.4	22.0	23.1	5.9	3.1	6.5	3.2
LA 104	17.7	43.3	24.8	45.2	10.9	5.1	9.7	4.7
LA 105	24.2	23.9	2.8	3.7	26.3	33.8	29.3	36.8
LA 106	1 <mark>7.3</mark>	16.5	1.3	2.0	15.5	21.7	17.5	23.6
LA 107	31.2	31.4	26.2	24.5	12.8	13.3	15.0	38.0
Oak SF	4.2	5.5	5.3	3.3	5.7	9.4	6.2	10.1
Sacto 4	10.4	10.8	49.4	47.7	33.1	28.4	37.1	31.0
Sacto 15	9.3	10.8	1.8	2.4	10.2	9.1	10.3	9.1
Sacto 19	9.1	10.9	7.9	7.5	25.5	28.0	26.5	28.8
AVERAGES Field	CO Off	CO On	NOx Off	NOx On	PM2.5 Off	PM2.5 On	PM10 Off	PM10 On
Site	ppmx10	ppmx10	ppb/10	ppb/10	ug/m3	ug/m3	ug/m3	ug/m3
Hayward 3	1 1.6	12.2	31.4	33.7	29.4	21.1	36.0	25.2
Hayward 4	8.6	10.4	22.1	17.3	11.6	7.7	13.1	8.0
LA 104	14.3	0.0	58.5	2 3.8	6.7	2.2	7.5	2.5
LA 105	1 2.3	0.0	8.2	1.0	39.6	57.7	44.6	65.0
LA 106	13.4	16.6	25.3	29.3	11.5	13.0	12.8	14.3
LA 107	29.4	0.0	23.3	1.7	9.5	2.5	12.9	3.7
Oak SF	2.1	2.8	7.1	7.3	20.4	20.9	23.3	23.6
Sacto 4	1 2.5	15 .3	49.9	54.1	29.7	26 .9	33.4	29.7
Sacto 19	41.7	63.6	10.0	9.6	37.8	37.8	38.4	38.4
Sacto 19 T2	13.7	15.6	10.7	10.3	19.9	13.6	20.0	13.7
Average IAQ	CO Off	CO On	NOx Off	NOx On	PM2.5 Off	PM2.5 On	PM10 Off	PM10 On
Concentrations	ppmx10	ppmx10	ppb/10	ppb/10	ug/m3	ug/m3	ug/m3	ug/m3
Baseline Average	1 5.7	18.9	17.4	19.0	15.2	1 5.5	16.5	18.5
Retrofit Average	15 .9	13.6	24.7	18.8	21.6	20.4	24.2	22.4
Reduction	-0.3	5.2	- 7. 3	0.2	-6 <mark>.</mark> 4	- 4. 9	- 7. 7	- 3. 9
% Reduction	-2%	28%	-42 %	1%	-42 %	<mark>-31</mark> %	-47%	- <mark>21</mark> %
Comparativa	50-150	ppmx10	3.0 pj	ob/10			m3 50 ug/m3	
Comparative	inside p	properly	24 hour	outside	24 hour	outside	24 hour	outside
Limit	adjusted	(US EPA)	(CAA	AQS)	(NAA	AQS)	(CAA	AQS)

Average IAQ concentrations increase about 10% when the baseline furnace was ON versus when it was OFF and decrease about 13% when the retrofit furnace was ON versus OFF. Except for carbon monoxide and nitrogen oxides when the furnace was ON, IAQ pollutant concentrations were 20% to 40% higher with the retrofit furnace than with the baseline furnace.

Table 32: Maximum IAQ Concentrations
Baseline and Retrofit Furnaces Off and On

MAXIMUMS	CO Off	CO On	NOx Off	NOx On	PM2.5 Off	PM2.5 On	PM10 Off	PM10 On
Baseline	ppmx10	ppmx10	ppb/10	ppb/10	ug/m3	ug/m3	ug/m3	ug/m3
Hayward 3	49.1	34.1	93.3	5 7.2	106.3	9.6	112.1	0.1
Hayward 4	4 3.2	20.1	61.7	29.6	1 32.0	7.9	151.2	8.2
LA 104	84.9	47.4	117.8	48.0	62.2	5.9	52.1	5.4
LA 105	24.2	23.9	2.8	3.7	26.3	33.8	29.3	36.8
LA 106	104.7	25.3	9.9	2.9	197.4	33.6	221.6	36.6
LA 107	50 .9	31.4	67.2	24.5	22.5	13.3	83.4	38.0
Oak SF	12.5	7.4	26.4	7.5	44.3	29.6	48.7	31.1
Sacto 4	30.0	17.5	138.5	74.2	353.7	91.2	403.6	100.3
Sacto 15	29.9	19.5	6.5	4.1	119.9	25.3	121.0	25.5
Sacto 19	26.4	18.8	24.3	13.3	277.8	108.5	306.3	112.2
MAXIMUMS	CO Off	CO On	NOx Off	NOx On	PM2.5 Off		PM10 Off	
MAXIMUMS Retrofit	CO Off ppmx10	CO On ppmx10	NOx Off ppb/10	NOx On ppb/10	PM2.5 Off ug/m3			
						PM2.5 On	PM10 Off	PM10 On
Retrofit	ppmx10	ppmx10	ppb/10	ppb/10	ug/m3	PM2.5 On ug/m3	PM10 Off ug/m3	PM10 On ug/m3
Retrofit Hayward 3	ppmx10 133.0	ppmx10 12.5	ppb/10 74.9	ppb/10 34.3	ug/m3 336.4	PM2.5 On ug/m3	PM10 Off ug/m3 456.0	PM10 On ug/m3
Retrofit Hayward 3 Hayward 4	ppmx10 133.0 37.5	ppmx10 12.5 12.5	ppb/10 74.9 49.6	ppb/10 34.3 20.3	ug/m3 336.4 195.3	PM2.5 On ug/m3 21.8 12.3	PM10 Off ug/m3 456.0 224.6	PM10 On ug/m3 26.0 12.7
Retrofit Hayward 3 Hayward 4 LA 104	ppmx10 133.0 37.5 34.1	ppmx10 12.5 12.5 0.0	ppb/10 74.9 49.6 110.8	ppb/10 34.3 20.3 23.8	ug/m3 336.4 195.3 17.7	PM2.5 On ug/m3 21.8 12.3 2.2	PM10 Off ug/m3 456.0 224.6 19.5	PM10 On ug/m3 26.0 12.7 2.5
Retrofit Hayward 3 Hayward 4 LA 104 LA 105	ppmx10 133.0 37.5 34.1 41.7	ppmx10 12.5 12.5 0.0 0.0	ppb/10 74.9 49.6 110.8 31.6	ppb/10 34.3 20.3 23.8 1.0	ug/m3 336.4 195.3 17.7 294.0	PM2.5 On ug/m3 21.8 12.3 2.2 58.3	PM10 Off ug/m3 456.0 224.6 19.5 331.5	PM10 On ug/m3 26.0 12.7 2.5 65.7
Retrofit Hayward 3 Hayward 4 LA 104 LA 105 LA 106	ppmx10 133.0 37.5 34.1 41.7 59.5	ppmx10 12.5 12.5 0.0 0.0 16.9	74.9 49.6 110.8 31.6 63.8	ppb/10 34.3 20.3 23.8 1.0 30.8	ug/m3 336.4 195.3 17.7 294.0 62.6	PM2.5 On ug/m3 21.8 12.3 2.2 58.3 13.3	PM10 Off ug/m3 456.0 224.6 19.5 331.5 69.2	PM10 On ug/m3 26.0 12.7 2.5 65.7 14.6
Retrofit Hayward 3 Hayward 4 LA 104 LA 105 LA 106 LA 107	ppmx10 133.0 37.5 34.1 41.7 59.5 67.2	ppmx10 12.5 12.5 0.0 0.0 16.9 0.0	ppb/10 74.9 49.6 110.8 31.6 63.8 69.0	ppb/10 34.3 20.3 23.8 1.0 30.8 1.7	ug/m3 336.4 195.3 17.7 294.0 62.6 69.9	PM2.5 On ug/m3 21.8 12.3 2.2 58.3 13.3 2.5	PM10 Off ug/m3 456.0 224.6 19.5 331.\$ 69.2 92.2	PM10 On ug/m3 26.0 12.7 2.5 65.7 14.6 3.7
Retrofit Hayward 3 Hayward 4 LA 104 LA 105 LA 106 LA 107 Oak SF	ppmx10 133.0 37.5 34.1 41.7 59.5 67.2 9.0	ppmx10 12.5 12.5 0.0 0.0 16.9 0.0 3.6	ppb/10 74.9 49.6 110.8 31.6 63.8 69.0 15.9	ppb/10 34.3 20.3 23.8 1.0 30.8 1.7 9.4	ug/m3 336.4 195.3 17.7 294.0 62.6 69.9 76.8	PM2.5 On ug/m3 21.8 12.3 2.2 58.3 13.3 2.5 29.5	PM10 Off ug/m3 456.0 224.6 19.5 331.5 69.2 92.2 87.7	PM10 On ug/m3 26.0 12.7 2.5 65.7 14.6 3.7 33.9

Maximum IAQ concentrations were found in previous analysis to be lower while the furnace was ON than when it was OFF for both baseline and retrofit furnaces. Indoor pollutants may originate from the wall furnaces and/or from indoor ranges or water heaters. It is theorized that furnace operation removes indoor pollutants by pulling room air for combustion.

Indoor pollutant concentrations for retrofit furnaces tend to be slightly lower than baseline furnace concentrations when the furnaces are ON. Indoor pollutant concentrations are higher in retrofit furnaces when the furnaces are OFF. It is possible that pilot operation in baseline furnaces helps to remove indoor pollution from sources beyond the furnace by pulling in some room air for combustion. Indoor pollution is potentially also being generated by natural gas ranges and water heaters, and coming from numerous other consumer products, as well as directly from food as it is being cooked. While this points out a useful function served by the pilot lights on baseline furnaces, a more efficient way to control indoor pollution would be to reduce the production of pollutants at their source or run dedicated ventilation fans.

Retrofit Wall Furnace Cost-Benefit Analysis

A survey of the wall furnaces and their costs was carried out by checking online specifications and list prices. The list price or estimated price was multiplied by 1.10 to estimate added taxes and then rounded to the nearest \$10. Figure 10 shows the cost of the full range of wall furnaces available from the primary manufacturer, Williams Comfort Products. Bars in orange are the retrofit furnaces installed in this project, with bars in red designated as the comparable standard replacement wall furnace. Table 33 includes additional details about the retrofit and standard furnaces, installation costs, and the total incremental cost for retrofit furnaces.

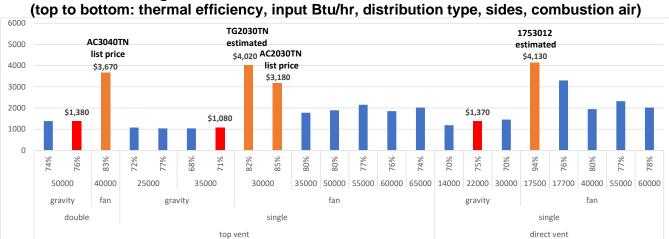


Figure 10: Wall Furnace Characteristics and Costs (top to bottom: thermal efficiency, input Btu/hr, distribution type, sides, combustion air)

Table 33: Wall Furnace Detailed Characteristics and Costs

Advanced Wall Furnace Standard Wall Furnace		Installation Cost	Incremental Cost
AC2030TN	3509822		
top vent, single-sided, fan-	top vent, single-sided,	Retrofit and	
type, 30,000 Btu/hr input,	gravity, 35,000 Btu/hr input,	standard installation	\$3,180 - \$1,080 =
85% thermal efficiency,	71% thermal efficiency,	costs assumed to be	\$2,100
AC power	No power needed	equal	
\$3,180 (list x 1.1)	\$1,080 (list x 1.1)		
AC3040TN	5009622		
top vent, double-sided, fan-	top vent, single-sided,	Retrofit and	
type, 40,000 Btu/hr input,	gravity, 50,000 Btu/hr input,	standard installation	\$3,670- \$1,380 =
83% thermal efficiency,	74% thermal efficiency,	costs assumed to be	\$2,290
AC power	No power needed	equal	
\$3,670 (list x 1.1)	\$1,380 (list x 1.1)		
TG2030TN	3509822		
top vent, single-sided, fan-	top vent, single-sided,	Retrofit and	
type, 30,000 Btu/hr input,	gravity, 35,000 Btu/hr input,	standard installation	\$4,020 - \$1,080 =
82% thermal efficiency,	71% thermal efficiency,	costs assumed to be	\$2,940
Self-charging battery	No power needed	equal	
\$4,020 (estimated x 1.1)	\$1,080 (list x 1.1)		
1753012	2203822		
direct vent, single-sided, fan-	direct vent, single-sided,	Extra \$150 assumed	
type, 17,500 Btu/hr input,	gravity, 22,000 Btu/hr input,	for installing	\$4,130 - \$1,370 + \$150=
94% thermal efficiency, 75% thermal efficiency,		condensate drain	\$2,910
condensing	non-condensing	Condensale drain	
\$4,130 (estimated x 1.1)	\$1,370 (list x 1.1)		

Two of the furnaces tested in this study are not yet available on the market, and list prices could not be found. Costs were estimated for the TG2030TN and 1753012 furnaces based on other furnace prices with additions for different furnace features.

It is assumed that retrofit furnaces are to replace an already existing furnace of equal size and shape. This means the AC2030TN, AC3040TN, and TG2030TN furnaces would get installed into an existing cavity on an interior wall. Installation into a different sized wall cavity could include extra costs for patching and repairing drywall.

Installation of a replacement wall furnace often includes various extra that would be done whether the replacement furnace is standard or advanced. Most common extras include replacement of the exhaust flue and repair of the flashing around the exhaust flue where it exits the roof.

The AC2030TN, AC2040TN, and 1753012 furnaces also required a source of AC power. AC power can be accessed by plugging the included cord into a nearby wall outlet, although the furnaces could also be hard-wired to power with some additional labor from an electrician. This study assumes that furnaces can be plugged into a nearby wall socket at no additional cost.

The 1753012 direct vent condensing furnace is assumed to be installed in place of an existing direct vent furnace on an outside wall. The only additional cost assumed for this furnace installation is to route the included flexible drain hose outside the building or to an interior drain. The cost of this upgrade is assumed to be \$150.

During this project the 1753012 direct vent condensing furnaces replaced existing top vent gravity wall furnaces installed within interior wall cavities. A lot of extras were needed to make this work. The 1753012 furnaces would not fit in theses wall cavities, so were installed against the wall and repairs were made to cover the cavity. The furnaces needed ducting to pull in air from the outside, and flue extensions to reach the existing flue. The materials and labor were very costly, on top of an already expensive furnace, so it is not recommended that this type of furnace retrofit be done.

Cost-benefit analyses are done to determine simple paybacks for the retrofit wall furnaces, where the payback period is calculated as follows:

Simple payback, years = (Advanced Furnace Cost – Standard Furnace Cost + Installation Cost Added – Incentive) / Annual Energy Savings

Incentives are utility payments made to encourage adoption of energy efficiency technologies, although incentives were assumed to be zero for these calculations. The payback period was found for the three different furnace operating scenarios in Table 34, Table 35, and Table 36:

- 1. Under ACTUAL estimated use patterns for a TMY3 year, assuming the baseline furnace pilot stays on all year
- 2. Under ACTUAL estimated use patterns for a TMY3 year, assuming the baseline furnace pilot stays on for only half the year
- 3. Under AVERAGE estimated use patterns for a TMY3 year, assuming the baseline furnace pilot stays on all year

Table 34: Wall Furnace Cost-Benefit under ACTUAL Usage Patterns with Baseline Furnace Pilot on All Year, Scenario 1

		Annual Energy	Advanced	Standard	Installation	Incremental	Payback
Baseline to Retrofit Description	Field Site	Cost Savings	Furnace Cost	Furnace Cost	Cost Added	Cost	Years
Gravity to Direct Vent Condensing	Hayward 3	\$217	\$4,130	\$1,370	\$150	\$2,910	13.4
Gravity to Direct Vent Condensing	Hayward 4	\$77	\$4,130	\$1,370	\$150	\$2,910	37.9
Gravity to Fan-Type w/AC Power	LA 104	\$123	\$3,180	\$1,080	\$0	\$2,100	17.1
Gravity to Fan-Type w/AC Power	LA 105	\$251	\$3,180	\$1,080	\$0	\$2,100	8.4
Gravity to Fan-Type w/AC Power	LA 106	\$113	\$3,180	\$1,080	\$0	\$2,100	18.6
Gravity to Fan-Type w/AC Power	LA 107	\$79	\$3,180	\$1,080	\$0	\$2,100	26.5
2-Sided Gravity to Fan-Type w/AC Power	Oakland SFH	\$196	\$3,670	\$1,380	\$0	\$2,290	11.7
Gravity to Fan-Type Self-Powered	Sacramento 4	\$ 143	\$4,020	\$4,020 \$1,080 \$0		\$2,940	20.6
Gravity to Fan-Type Self-Powered	Sacto 15 to 19 T2	\$117	\$4,020	\$1,080	\$0	\$2,940	25.1
Gravity to Fan-Type Self-Powered	Sacramento 19	\$163	\$4,020	\$1,080	\$0	\$2,940	18.0
	Average	\$148	\$3,670	\$1,170	\$30	\$2,530	19.7

Table 35: Wall Furnace Cost-Benefit under ACTUAL Usage Patterns with Baseline Furnace Pilot on Half the Year, Scenario 2

		Energy Cost	Advanced	Standard	Installation	Incremental	Payback	
Baseline to Retrofit Description	Field Sites	Savings	Furnace Cost	Furnace Cost	Cost Added	Cost	Years	
Gravity to Direct Vent Condensing	Hayward 3	\$173	\$4,130	\$1,370	\$150	\$2,910	16.8	
Gravity to Direct Vent Condensing	Hayward 4	\$34	\$4,130	\$1,370	\$150	\$2,910	84.7	
Gravity to Fan-Type w/AC Power	LA 104	\$60	\$3,180	\$1,080	\$0	\$2,100	34.8	
Gravity to Fan-Type w/AC Power	LA 105	\$208	\$3,180	\$1,080	\$0	\$2,100	10.1	
Gravity to Fan-Type w/AC Power	LA 106	\$65	\$3,180	\$1,080	\$0	\$2,100	32.2	
Gravity to Fan-Type w/AC Power	LA 107	\$37	\$3,180	\$1,080	\$0	\$2,100	56.0	
2-Sided Gravity to Fan-Type w/AC Power	Oakland SFH	\$1 05	\$3,670	\$1,380	\$0	\$2,290	21.8	
Gravity to Fan-Type Self-Powered	Sacramento 4	\$83	\$4,020	\$1,080	\$0	\$2,940	3 5.5	
Gravity to Fan-Type Self-Powered	Sacto 15 to 19 Ta	Sacto 15 to 19 T2	\$58	\$4,020	\$1,080	\$0	\$2,940	50.6
Gravity to Fan-Type Self-Powered	Sacramento 19	\$76	\$4,020	\$1,080	\$0	\$2,940	38.7	
	Average	\$90	\$3,670	\$1,170	\$30	\$2,530	3 8.1	

Table 36: Wall Furnace Cost-Benefit under AVERAGE Usage Patterns with Baseline Furnace Pilot on All Year, Scenario 3

		Ann	ual Energy	Advanced	Standard	Installation	Incremental	Payback									
Baseline to Retrofit Description	Field Site	Co	st Savings	Furnace Cost	Furnace Cost	Cost Added	Cost	Years									
Gravity to Direct Vent Condensing	Hayward 3		\$110	\$4,130	\$1,370	\$150	\$2,910	26.5									
Gravity to Direct Vent Condensing	Hayward 4		\$108	\$4,130	\$1,370	\$150	\$2,910	27.0									
Gravity to Fan-Type w/AC Power	LA 104		\$137	\$3,180	\$1,080	\$0	\$2,100	15.4									
Gravity to Fan-Type w/AC Power	LA 105		\$123	\$3,180	\$1,080	\$0	\$2,100	17.1									
Gravity to Fan-Type w/AC Power	LA 106		\$131	\$3,180	\$1,080	\$0	\$2,100	16.0									
Gravity to Fan-Type w/AC Power	LA 107	\$120		\$3,180	\$1,080	\$0	\$2,100	17.5									
2-Sided Gravity to Fan-Type w/AC Power	Oakland SFH		\$242	\$3,670	\$1,380	\$0	\$2,290	9.4									
Gravity to Fan-Type Self-Powered	Sacramento 4		\$159	\$4,020	\$1,080	\$0	\$2,940	18.5									
Gravity to Fan-Type Self-Powered	Sacto 15 to 19 T2	\$149	\$149	\$1 49	\$ 149	\$149	\$149	\$149	\$149	\$149	\$149	\$149	\$4,020	\$1,080	\$0	\$2,940	19.7
Gravity to Fan-Type Self-Powered	Sacramento 19		\$221	\$4,020	\$1,080	\$0	\$2,940	13.3									
	Average		\$150	\$3,670	\$1,170	\$30	\$2,530	18.0									

Paybacks based on list and estimated prices were very high at 19.7, 38.1, and 18.0 years for furnace operating scenarios 1, 2, and 3, although the paybacks are all within the 40-year life of existing wall furnaces. The cost of efficient wall furnaces cannot be justified on energy savings alone at their currently estimated prices. As their prices fall, or as utilities offer incentives, they will become more cost effective.

Wall Furnace Installation and Operation Issues

Problems with retrofit wall furnaces in five categories are discussed below: installation issues, self-charging problems, noise levels, thermostat operation, and comfort delivery.

Installation Issues

Some installation issues with the retrofit furnaces point to the need for more contractor training and experience:

- A gas leak occurred on Sacramento apartment 4's TG2030TN furnace. This was a
 contractor installation issue not specific to wall furnaces. Making safe, sealed gas
 connections is a standard part of hooking up any gas appliance, but too many HVAC
 professionals do not do this correctly. This points to the need for better contractor
 training in general to ensure that all gas connections are checked for leaks using a soap
 solution.
- A thermostat battery was not installed on Sacramento apartment 4's TG2030TN furnace. This can be explained by realizing that standard wall furnaces provide power to the thermostat via the pilot system so thermostat batteries are generally only needed as backup on standard wall furnace installations. However, these batteries should always be installed as a matter of course.

Various system components may also need to be replaced or added when installing any new wall furnace:

- Existing exhaust flues are often replaced when the wall furnace is replaced. Contractors
 attest that existing flues are dirty, rusted, broken, incorrectly sized, improperly flashed
 where they exit the roof, or lack a proper vent cap.
- If the existing and retrofit furnaces are not the same size, some work may need to be needed to resize the wall cavity or repair a wall. Making the cavity taller is simple, but if the existing cavity is too tall there may be some labor involved to drywall, patch, and paint the wall behind the furnace.
- The AC2030TN and AC3040TN furnaces needed connections to AC power. This can be
 done inexpensively by plugging it into a nearby wall outlet, or for some extra expense by
 hard-wiring it to AC power.
- The 1753012 wall furnace was a condensing furnace with a drain pipe that needed to
 either be routed to the outside, hooked up to a drain inside the home, or attached to a
 condensate drain pump. The temporary Hayward installations used a drain pan under
 the units, but this is not recommended as the pan could overflow or contribute to mold
 formation.

Self-Charging Battery Problems

The TG2030TN furnaces in Sacramento apartments 15 and 19 appear experienced problems with their self-charging systems. Note that these furnaces were still considered to be experimental and were not yet available on the market at the time of testing. A self-charging battery is used to power the furnace control system, the hot surface igniter, and the furnace fans. This battery loses charge when the furnace has not been operated for a while and can then fail to ignite or operate the furnace.

The wall furnace in apartment 15 stopped working, and although Williams never gave a diagnosis of the problem, we surmise that the self-charging battery was not adequately charged upon initial installation and was unable to be recharged or hold a charge.

Replacement batteries also failed to work. This furnace was removed without the project team being able to collect any post-retrofit.

There were similar self-charging battery problems with apartment 19's furnace, but the replacement battery there was able to be charged and kept the system operating for the rest of the 2021-22 heating season. The furnace in apartment 19 also kept running without any operational problems through some additional monitoring during November and December 2022. This may have been helped along by cold weather and subsequent regular wall furnace operation in the two apartments over this period, enabling the self-charging batteries to stay charged.

Making the self-charging batteries more reliable is extremely important. Discussions with Williams indicated that they were aware of these problems and working to fix them. They said they have both improved the battery and adjusted the furnace control system so that it shuts down after the furnace has been inoperable to keep the battery charge intact. However, these improvements are expected to be applied to future versions of the TG2030TN furnaces, were not tested during this project, and therefore cannot be certified as reliable by this project team. We recommend more testing of future versions of the TG2030TN to ensure reliability of this wall furnace's operation.

It is also important for Williams to add instructions for battery charging to their furnace manuals. This should be no more difficult than lighting the pilot for standard wall furnaces, so proper battery charging procedures can be learned by contractors and occupants with adequate training and directions.

Noise Levels

Noise levels from the AC- and TG- wall furnace models were reported to be unacceptably high by two of the occupants. No noise level measurements were made, but the project team did also report that double-sided AC3040TN furnace with two supply fans was especially loud.

Some increase in furnace noise is inevitable when switching from a gravity furnace to a fantype furnace. But unlike other fan-powered equipment used in homes, wall furnaces are not currently subject to any noise level requirements, or even any requirement to test and report noise ratings in their specifications.

According to ASHRAE Standard 62.2 (ASHRAE 2013), ventilation fans inside habitable space that are used intermittently, like bathroom fans and range hoods, are required to operate at sound levels below 3 sones (43.74 dB). Fans that operate continuously like whole house fans are required to stay below 1 sone (28 dB), even if they are not in habitable space.

Without keeping their noise levels down, these more efficient wall furnaces risk not being able to gain consumer acceptance. It is recommended that they at least test and report sound levels and strive to adhere to the standards that apply to ventilation fans.

Thermostat Operation

Wall furnace thermostat controls for the AC2030TN, AC3040TN, and TG2030TN furnaces were slow to respond:

- Thermostats took 15 to 20 seconds to wake up when occupants changed settings.
 Considering that wall furnaces tend to be operated manually much more frequently than central furnaces, this can be a frequently annoying issue for occupants.
- Thermostats also have a one-minute delay programmed into their controls, turning the furnace on only after the space temperature has been 2°F below the thermostat setpoint for one minute, and turning the furnace off only when space temperature has been 1°F above the thermostat for one minute.

Realizing again that the typical wall furnace user operates the furnace manually, imagine an occupant going to adjust thermostat, needing to wait 15 seconds for it to wake up, adjusting the thermostat setpoint, then waiting another minute for the system to start or stop heating. While some users will understand there is a lag time, many users are likely to keep raising or lowering the setpoint in frustration until they get a response.

Thermostats should "wake up" instantly at the push of any button. Much shorter burner on-off delay times are also recommended. Some indication that the thermostat setting has been changed can also greatly improve operator satisfaction.

Comfort Delivery

Occupants using the AC2030TN and 1753012 furnaces reported a lot of temperature variability when the furnaces were run at a constant setpoint. The space felt too cold before the furnace cycled on, and too hot before the furnace cycled off.

It must first be noted that these fan-type furnaces distribute heat very differently from the baseline gravity furnaces. Occupants who are used to the previous gravity furnace are going to have a very different experience with a fan-type furnace, since they will likely now have more warm air flowing around them while the furnace is on.

Air distribution patterns from a fan-type furnace may also mean the thermostat is no longer in the most representative spot to sense space temperatures and control furnace on-off operation. Forced-air systems with thermostatic controls tend to struggle to keep occupants comfortable, because warm air does not always get evenly distributed throughout a room. Thermostat placement is important. Advances in the use of wireless remote temperature sensors can also make a huge difference by allowing occupants to move sensors to a spot that optimizes their comfort.

Thermostat controls also contribute to the reported comfort problems. The furnaces currently turn on only when temperatures are 2°F below the thermostat setpoint for one minute and turn the furnace off when space temperature has been 1°F above the thermostat for one minute. This adds up to a total differential of 3°F. This is quite a bit higher than the generally recommended differential of 0.5 to 1.0°F for non-compressor-based heating systems, said to optimize comfort without causing excessive cycling and associated wear and tear on equipment. It is recommended that on-off controls be changed so furnaces turn on when temperature is 1°F below the thermostat setpoint for 30 seconds or less and turn off when temperature is 0.5°F above the thermostat setpoint for 30 seconds or less.

Conclusion

Wall furnace field monitoring and laboratory testing measured energy use, use patterns, emissions, and indoor air quality. Comparisons of furnace performance, operating characteristics, energy use, emissions, and indoor air quality improvements are below.

Energy Characteristics

Table 37 lists important energy use characteristics of the baseline and retrofit furnaces found during laboratory testing and field monitoring:

- Retrofit furnaces had 15% lower average rated input capacity than baseline furnaces
- Retrofit furnaces had 3% higher average **tested input capacity** than baseline furnaces
- All retrofit furnaces eliminated the use of standing pilots
- Average tested thermal efficiency of retrofit furnaces increased by 17 percentage points
- Retrofit furnaces had 31% higher average tested output capacity than baseline furnaces
- Three of the four tested retrofit furnace types used external AC power

Table 37: Baseline and Retrofit Wall Furnace Energy Characteristics

		. D uoo.		and it	, t. O t	· a · · ·	ч	<u> </u>	<u>. 9</u>	Ollara	Cicionic	<u> </u>	
BASE	LINE Wall Fur	nace		Natu	ral Gas Input	Capacity	,	Thermal	Efficiency	Natural	Gas Output Cap	oacity	AC Power
Manufacturer	Model	Field Sites	Age years	Rated Input Btu/hr	Tested Input Btu/hr	% Rated Input	Pilot Btu/hr	Rated TE	Tested TE	Output Btu/hr	Tested Output Btu/hr	% Rated Output	Active W
Perfection Products	PW8G25SEN	Hayward 3	~40	25000	20280	81%	520	70.0%	76.3%	17 500	15470	88%	0
Perfection Products	PW8G25SEN	Hayward 4	~40	25000	20210	81%	510	70.0%	71.8%	17 500	14510	83%	0
Williams	25GV-A1	LA 104	~35	25000	25100	100%	750	70.0%	70.5%	17 500	17700	101%	0
Williams	35GV-C #1	LA 105	~35	35000	31720	91%	520	70.0%	62.8%	24500	19920	81%	0
Williams	35GV-C #2	LA 106	~35	35000	31800	91%	570	70.0%	73.6%	24500	23400	96%	0
Williams	RMG35-IN	LA 107	~35	35000	31810	91%	500	70.0%	75.1%	24500	23890	98%	0
Williams	5009622	Oak SF	~15	50000	44500	89%	1090	76.0%	50.1%	38000	22290	59 %	0
Holly General	35S-D #1	Sacto 4	40+	35000	31530	90%	720	50.0%	39.0%	17 500	12300	70%	0
Holly General	35S-D #2	Sacto 15	40+	35000	29110	83%	710	50.0%	60.8%	17 500	17 700	101%	0
Williams	3509622	Sacto 19	~10	35000	33800	97%	1050	74.0%	73.2%	25900	24740	96%	0
	Baseli	ne Average	32	33500	29990	89%	690	67.0%	65.3%	22490	19190	87 %	0
RETR	OFIT Wall Fur	nace		Natu	,	Thermal	Efficiency	Natural Gas Output Capacity			AC Power		
			Age	Rated Input	Tested Input	% Rated	Pilot			Output	Tested Output	% Rated	Active
Manufacturer	Model	Field Sites	years	Btu/hr	Btu/hr	Input	Btu/hr	Rated TE	Tested TE	Btu/hr	Btu/hr	Output	w
Williams	1753012	Hayward 3	0	17500	19790	113%	0	94%	89.5%	16450	17 710	108%	100.1
Williams	1753012	Hayward 4	0	17500	19790	113%	0	94%	89.5%	16450	17 710	108%	100.1
Williams	AC2030TN	LA 104	0	30000	33180	111%	0	85%	81.5%	25500	27040	106%	12.6
Williams	AC2030TN	LA 105	0	30000	33180	111%	0	85%	81.5%	25500	27040	106%	12.6
Williams	AC2030TN	LA 106	0	30000	33180	111%	0	85%	81.5%	25500	27040	106%	12.6
Williams	AC2030TN	LA 107	0	30000	33180	111%	0	85%	81.5%	25500	27040	106%	12.6
Williams	AC3040TN	Oakland SFH	0	40000	41720	104%	0	83%	79.0%	33200	32960	99%	12.4
Williams	TG2030TN	Sacto 4	0	30000	31410	105%	0	82%	78.5%	24600	24660	100%	0.0
Williams	TG2030TN	Sacto 19 T2	0	30000	31410	105%	0	82%	78.5%	24600	24660	100%	0.0
Williams	TG2030TN	Sacto 19	0	30000	31410	105%	0	82%	78.5%	24600	24660	100%	0.0
	Retro	fit Average	ø	28500	30830	109%	0	85.7%	82.0%	24190	2505 0	104%	26.3
		Savings		5000	-840	-19%	690	-19%	-17%	-1700	-5860	-17%	-26.3
		% Savings		15%	-3%	-22%	100%	-28%	-25%	-8%	-31%	-19%	-100%

Energy Savings

Table 38 lists the operating characteristics of the baseline and retrofit wall furnaces, and calculates their energy use, energy costs, and savings under TMY3 conditions, finding that:

- Retrofit furnace average annual operating hours are reduced by 70 hours or 37%
- Annual energy savings of retrofit furnaces is 7.8 MMBtu on average, or 68%
- Average annual utility cost savings was \$148

Table 38: Baseline and Retrofit Annual Energy Use, Energy Cost, and Savings during ACTUAL Operation under TMY3 Weather Conditions

		AL Operation	ui								
BAS	ELINE Wall Furi	nace			TUAL Oper			Y3 Annual - F	ilot o	n All Y	ear
		= : 110:		perating	6 4		g Cycle				
Manufacturer	Model	Field Site		hrs/year	Cycles/year	IV	inutes	MMBtu/year		/year	Utility Cost
Perfection Products	PW8G25SEN #1	Hayward 3 Hayward 4	H	385.3	568 295		40.7 31.8	12.17 7.55		0	\$231 \$143
Perfection Products Williams	PW8G25SEN #2 25GV-A1	LA 104	H	156.3	113		12.2	7.13		0	\$143 \$135
Williams	35GV-A1	LA 104 LA 105	H	23.0 298.0	721		14.2 24.8	13.85		0	\$263
Williams	35GV-C #1	LA 106		114.0	573		11.9	8.55		0	\$163
Williams	RMG35-IN	LA 106	H	23.9	94		15.3	5.13		0	\$103
Williams	5009622.0	Oakland SF	H	189.3	346		32.9	17.77		0	\$338
Holly General	35S-D #1	Sacto 4	H	170.2	237		43.1	11.55		0	\$219
Holly General	35S-D #2	Sacto 15	H	262.5	515		30.6	13.67		0	\$260
Williams	3509622.0	Sacto 19		262.4	570		27.6	17.79		0	\$338
· · · · · · · · · · · · · · · · · · ·	3303022.0	Baseline Average		188.5	417		27.1	11.52		0	\$219
RET	ROFIT Wall Fur							/3 Annual - N			
			6	perating			g Cycle			- 0	
Manufacturer	Model	Field Site		hrs/year	Cycles/year		linutes	MMBtu/year	kWh	/year	Utility Cost
Williams	1753012	Hayward 3		36.5	83		<mark>26.</mark> 4	0.72	3.6		\$15
Williams	1753012	Hayward 4		16 6.0	269		37 .0	3.28	16.6		\$67
Williams	AC2030TN	LA 104		20.0	84		14.2	0.66	0.3		\$13
Williams	AC2030TN	LA 105		19.0	87		13.1	0.63	0.2		\$12
Williams	AC2030TN	LA 106		78.6	121		38.8	2.61	1.0		\$50
Williams	AC2030TN	LA 107		28.9	79		21 .9	0.96	0.4		\$18
Williams	AC3040TN	Oakland SFH		178.0	240		44.5	7.43	2.2		\$ <mark>142</mark>
Williams	TG2030TN	Sacto 4		128.5	223		34 .5	4.03	0.0		\$77
Williams	TG2030TN	Sacto 19 T2		239.0	224		63.9	7.51	0.0		\$ <mark>143</mark>
Williams	TG2030TN	Sacto 19	Ш	292.8	360		48.9	9.20	0.0		\$1 <mark>75</mark>
		Retrofit Average		1 18.7	208		34. 3	3.70	2.4		\$71
		TMY3 A			al Savings				,		
				perating	Cuales (vees		g Cycle	NANADtu /voor	l-14/h	/year	Utility Cost
Baseline to Retrofit De		Field Site		hrs/year	Cycles/year	IV	linutes	MMBtu/year	KVVII		
Gravity to Direct Ven		Hayward 3		348.8	485		14.4	11.45		-3.6	\$217
Gravity to Direct Ven	t Condensing	Hayward 4	Щ	-9.7	26		-5.2	4.26		-16.6	\$77
Gravity to Fan-Type v	v/AC Power	LA 104		3.0	29		-2.0	6.47		-0.3	\$123
Gravity to Fan-Type v	v/AC Power	LA 105		279.0	633		11.7	13.22		-0.2	\$251
Gravity to Fan-Type v	v/AC Power	LA 106	Ш	35.4	451		26.9	5.95		-1.0	\$113
Gravity to Fan-Type v	v/AC Power	LA 107		-5.0	14		-6.6	4.17		-0.4	\$79
2-Sided Gravity to Fa	n-Type w/AC Pov	Oakland SF		11.3	106		11.6	10.34		-2.2	\$19 6
Gravity to Fan-Type S	self-Powered	Sacto 4		41.7	13		8.6	7.52		0.0	\$ 143
Gravity to Fan-Type S	self-Powered	Sacto 15 to 19 T2		23.4	291		33.4	6.17		0.0	\$117
Gravity to Fan-Type S	self-Powered	Sacto 19		-30.4	210		21.2	8.60		0.0	\$1 63
		69.7	226		<mark>18</mark> .5	7.81		-2.4	\$1 48		
	Saving % Saving						68%	68%			68%

Emission Reductions

Table 39 lists estimated annual emissions of carbon monoxide, nitrogen oxides, and total hydrocarbons in baseline and retrofit furnaces under TMY3 conditions. Reductions in emissions in retrofit furnaces are substantial, with 87% reduction in CO emissions, 86% reduction in NOx emissions, and 93% reduction in THC emissions. The bulk of CO and THC emissions are due to elimination of the standing pilot, while the reduction in NOx emissions is mostly due to better combustion during active heating operation.

Table 39: Baseline and Retrofit Annual CO, NOx, and THC Emissions and Savings during ACTUAL Operation under TMY3 Weather Conditions

BAS	BASELINE Wall Furnace				ACTUAL Operation - TMY3 Annual - Pilot on All Year						
_				perating			g Cycle				
Manufacturer	Model	Field Site	_	hrs/year	Cycles/year	_	inutes		NOx lbm/year		
Perfection Products	PW8G25SEN #1	Hayward 3		385.3	568		10.7	2.02	1.02	0.58	
Perfection Products	PW8G25SEN #2	Hayward 4		15 <mark>6.3</mark>	295	_	31.8	0.37	0.43	2.57	
Williams	25GV-A1	LA 104	Щ	23.0	113		2.2	1.66	0.12	3.66	
Williams	35GV-C #1	LA 105		298.0	721		24. 8	1.13	0.97	0.07	
Williams	35GV-C #2	LA 106		114.0	573		11.9	0.55	0.43	0.00	
Williams	RMG35-IN	LA 107	H	23.9	94		15.3	0.81	0.26	1.98	
Williams	5009622.0	Oakland SF	┡	189.3	346		32.9	7.61	1.22	0.10	
Holly General	35S-D #1	Sacto 4		17 <mark>0.2</mark>	237		43.1	1.04	0.71	0.04	
Holly General Williams	35S-D #2	Sacto 15		262.5 262.4	515 570		30.6 27.6	7.57	0.26	0.36	
Williams	3509622.0	Sacto 19						1.12	1.56	2.74	
		Baseline Average		188.5	417		27. 1	2.39	0 <mark>.70</mark>	1.21	
RET	ROFIT Wall Furi	nace		AC	CTUAL Oper			lY3 Annual - I	No Standing F	Pilot	
				perating			g Cycle	-			
Manufacturer	Model	Field Site		hrs/year	Cycles/year	_	inutes	CO lbm/year	NOx lbm/year		
Williams		Hayward 3	H	36.5	83		26.4	0.02	0.06	0.00	
Williams		Hayward 4	-	16 <mark>6.0</mark>	269		37.0	0.07	0.28	0.01	
	AC2030TN	LA 104		20.0	84		14.2	0.08	0.01	0.06	
	AC2030TN	LA 105	4	19.0	87		13.1	0.07	0.01	0.06	
	AC2030TN	LA 106	-	78.6	121		88.8	0.22	0.04	0.24	
	AC2030TN	LA 107	H	28.9	79		21.9	0.11	0.01	0.08	
	AC3040TN	Oakland SFH		178.0	240		14. 5	2.04	0.29	0.15	
	TG2030TN TG2030TN	Sacto 4 Sacto 19 T2	H	128.5 239.0	223		34.5 53.9	0.14 0.19	0.05	0.02	
	TG2030TN	Sacto 19 12	H	292.8	360		48.9	0.19	0.10 0.12	0.12 0.10	
VVIIIIdilis	1G20301N	Retrofit Average		118.7	208		34.3	0.32	0.12	0.10	
							94.5	0.32	0.10	0.06	
		TIVITS	_	perating	ual Savings		g Cycle				
Baseline to Retrofit De	scription	Field Site		hrs/year	Cycles/year		inutes	CO lbm/year	NOx lbm/year	THC lbm/year	
Gravity to Direct Vent	t Condensing	Hayward 3		348.8	485		14 .4	2.01	0.96	0.58	
Gravity to Direct Vent	t Condensing	Hayward 4		-9.7	26		-5.2	0.30	0.15	2.56	
Gravity to Fan-Type v	v/AC Power	LA 104		3.0	29		2.0	1.58	0.11	3.60	
Gravity to Fan-Type v	v/AC Power	LA 105		279.0	633		11 .7	1.05	0.96	0.01	
Gravity to Fan-Type v		LA 106		35.4	451	Ц	26.9	0.34	0.40	-0.23	
Gravity to Fan-Type v	v/AC Power	LA 107		-5.0	14		6.6	0.70	0.24	1.8 <mark>9</mark>	
2-Sided Gravity to Fa	n-Type w/AC Pow	Oakland SF	L	11.3	106		11.6	5.57	0.93	-0.05	
Gravity to Fan-Type S	elf-Powered	Sacto 4		41.7	13		8 .6	0.90	0.65	0.02	
Gravity to Fan-Type S	elf-Powered	Sacto 15 to 19 T2		23.4	291		33.4	7.39	0.16	0.24	
Gravity to Fan-Type Self-Powered Sacto 19			L	-30.4	210	_	21.2	0.86	1.44	2.64	
		69.7	226		<mark>18</mark> .5	2.07	φ.60	1.12			
		% Savings		37%	54%	(68%	87%	86%	93%	

Indoor Air Quality Improvements

Table 40 lists the average and maximum indoor air concentrations of carbon monoxide, nitrogen oxides, and particulate matter (PM2.5 and PM10) when furnaces are off and on for baseline and retrofit furnaces. Comparative limits are based on various national and California standards for indoor or outdoor air quality. Values in red exceed the comparative limits. The effect of retrofit wall furnaces on indoor air quality is mixed:

- When furnaces were ON, average CO and NOx concentrations and maximum NOx, PM2.5, and PM10 concentrations were reduced
- Concentrations of indoor air pollutants were always higher for retrofit furnaces than for baseline furnaces when the furnaces were OFF
- All maximum pollutant concentrations were reduced when baseline and retrofit furnaces were ON compared to when they were OFF

Table 40: Average and Maximum Concentrations of Indoor Air Pollutants during Baseline and Retrofit Wall Furnace Operation

Das	cillic all	ı venom	. waii Fu	illiace Op	CIALIOII			
CO Off	CO On	NOx Off	NOx On	PM2.5 Off	PM2.5 On	PM10 Off	PM10 On	
ppmx10	ppmx10	ppb/10	ppb/10	ug/m3	ug/m3	ug/m3	ug/m3	
15.7	18.9	17.4	19.0	15.2	15. 5	16.5	18.5	
15 .9	13.6	24.7	18.8	21.6	20.4	24.2	22.4	
-0.3	5.2	- 7. 3	0.2	-6 <mark>.</mark> 4	-4 <mark>.</mark> 9	- 7. 7	- 3. 9	
-2%	28%	<mark>-42</mark> %	1%	-42 %	<mark>-31</mark> %	-47%	- <mark>21</mark> %	
50-150 ppmx10		3.0 pp	b/10	35 սչ	g/m3	50 ug/m3		
inside p	roperly	24 hour	outside	24 hour	outside	outside		
adjusted	(US EPA)	(CAA	AQS)	(NAA	AQS)	(CAAQS)		
CO Off	CO On	NOx Off	NOx On	PM2.5 Off	PM2.5 On	PM10 Off	PM10 On	
ppmx10	ppmx10	ppb/10	ppb/10	ug/m3	ug/m3	ug/m3	ug/m3	
45.6	24 .5	54.9	26.5	134.2	35.9	152.9	39.4	
70.7	29.5	58. 8	22.4	185.4	34.5	21 1.8	37.3	
-25 <mark>.2</mark>	-5.0	-4.0	4.1	-51.2	1.3	-58.9	2.2	
-55%	-2 <mark>0%</mark>	-7%	16%	-38%	4%	- <mark>38%</mark>	5%	
50-150	ppmx10	18 pp	b/10	35 u	g/m3	50 ug/m3		
inside _l	properly	1 hour	1 hour outside		outside	24 hour outside		
adjusted	(US EPA)	(CA	AQS)	(NA	AQS)	(CAA	AQS)	
	CO Off ppmx10 15.7 15.9 -0.8 -2% 50-150 inside padjusted CO Off ppmx10 45.6 70.7 -25.2 -55% 50-150 inside padjusted	CO Off ppmx10 pp	CO Off CO On NOx Off ppmx10 ppmx10 ppb/10 15.7 18.9 17.4 15.9 13.6 24.7 -0.3 5.2 -7.3 -2% 28% -42% 50-150 ppmx10 3.0 ppmx10 inside properly adjusted (US EPA) CO Off CO On NOx Off ppmx10 ppmx10 ppmx10 ppb/10 45.6 24.5 54.9 70.7 29.5 58.8 -25.2 -5.0 -4.0 -55% -20% -7% 50-150 ppmx10 18 ppmx10 inside properly 1 hour	CO Off CO On NOx Off NOx On ppmx10 ppmx10 ppb/10 ppb/10 15.7	CO Off CO On ppmx10 ppb/10 ppb/10 ug/m3 15.7 18.9 17.4 19.0 15.2 15.9 13.6 24.7 18.8 21.6 -0.3 5.2 -7.3 0.2 -6.4 -2% 28% -42% 1% -42% 50-150 ppmx10 3.0 ppb/10 35 ug adjusted (US EPA) (CAAQS) (NAA CO Off CO On NOx Off NOx On ppmx10 ppmx10 ppmx10 ppb/10 ug/m3 45.6 24.5 54.9 26.5 134.2 70.7 29.5 58.8 22.4 185.4 -25.2 -5.0 -4.0 4.1 -51.2 -55% -20% -7% 16% 38% 50-150 ppmx10 18 ppb/10 35 ug inside properly 1 hour outside 24 hour	ppmx10 ppmx10 ppb/10 ppb/10 ug/m3 ug/m3 15.7 18.9 17.4 19.0 15.2 15.5 15.9 13.6 24.7 18.8 21.6 20.4 -0.3 5.2 -7.3 0.2 -6.4 -4.9 -2% 28% -42% 1% -42% -31% 50-150 ppmx10 3.0 ppb/10 35 ug/m3 24 hour outside 24 hour outside adjusted (US EPA) (CAAQS) (NAAQS) (NAAQS) CO Off cO On ppmx10 NOx Off ppb/10 PM2.5 Off pM2.5 On ug/m3 ug/m3 45.6 24.5 54.9 26.5 134.2 35.9 70.7 29.5 58.8 22.4 185.4 34.5 -25.2 -5.0 -4.0 4.1 -51.2 1.3 -55% -20% -7% 16% -38% 4% 50-150 ppmx10 18 ppb/10 35 ug/m3 24 hour outside	CO Off CO On ppmx10 ppmx10 ppb/10 ppb/10 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 15.7 18.9 17.4 19.0 15.2 15.5 16.5 15.9 13.6 24.7 18.8 21.6 20.4 24.2 -0.3 5.2 -7.3 0.2 -6.4 -4.9 -7.7 -2% 28% -42% 1% -42% -31% -47% 50-150 ppmx10 3.0 ppb/10 35 ug/m3 50 ug/m3 inside properly adjusted (US EPA) (CAAQS) (NAAQS) (CAAQS) CO Off CO On ppmx10 ppb/10 ppb/10 ug/m3 ug/m3 ug/m3 45.6 24.5 54.9 26.5 134.2 35.9 152.9 70.7 29.5 58.8 22.4 185.4 34.5 211.8 -25.2 -5.0 -4.0 4.1 -51.2 1.3 -58.9 50-150 ppmx10 18 ppb/10 35 ug/m3 50 ug/m3 inside properly 1 hour outside 24 hour outside 25 ug/m3 50	

Indoor pollution is likely also being generated by natural gas ranges and water heaters, and coming from numerous other consumer products, as well as directly from food as it is being cooked. Flue gas emissions from the retrofit furnaces were substantially reduced from the baseline furnace levels. If wall furnaces were the largest source of indoor air pollution at the project sites, indoor pollutant concentrations would have dropped dramatically after the retrofit furnaces were installed. It therefore seems that wall furnaces are not the largest source of indoor pollution at these sites.

Drops in indoor pollution levels when furnaces were ON indicate that retrofit furnaces do somewhat improve indoor air quality compared to baseline furnaces. This indicates that some wall furnace pollutants do likely make their way into the indoor spaces, and the lower emitting retrofit furnaces have less pollution getting indoors.

But when the furnaces were OFF, which is most of the time, indoor air quality was better on average when the baseline furnaces were installed. This surprising result may be due to the standing pilot. Its continual, low-level combustion appears to draw polluted air from the indoor space and exhaust it through the wall furnace flue.

The beneficial effect of wall furnace operation on indoor air quality also seems to be confirmed by drops in maximum pollutant concentrations when furnaces are ON. It is theorized that they draw air from the space for combustion when they operate and reduce the worst pollutant concentrations.

The seemingly beneficial effects of wall furnace operation, including pilot light operation, is not a reason to keep baseline wall furnaces and their standing pilots. It instead points to the need to reduce other sources of indoor pollution and improve indoor ventilation, while incorporating energy efficient wall furnaces with lower emissions.

Furnace Costs and Operating Issues

The advanced retrofit wall furnaces studied in this project can save substantial amounts of energy and emissions, but their cost and various operating issues are currently an obstacle to their widespread adoption.

First, the incremental costs of advanced retrofit furnaces over standard baseline furnaces range from \$2100 to \$2940. Two of the retrofit furnaces tested in this project are not yet available on the market, so their purchase prices were estimated, but online list prices were used for replacement baseline and retrofit furnaces. The retrofit furnace prices are currently much higher than standard, minimally efficient furnaces.

This led to high simple payback periods for retrofit furnaces compared to standard efficiency furnaces with standing pilots that operate all year, ranging from 8 to 38 years, and averaging 20 years. While these furnaces should generally have a longer life than their payback period, their installation does not make sense from an economic perspective based on utility bill savings alone. Utility incentives for these furnaces can help make them more economically feasible, and help them gain market share, while accruing significant emission reductions. However, advanced furnace prices must be reduced in order to gain substantial market share in the future.

HVAC contractors need more training on both the basics of wall furnace installation, as well as these specific retrofit technologies. Wall furnaces are a relatively simple technology for an HVAC technician to install, but there are still important safety procedures that cannot be skipped, such as making sure there are no gas leaks. Technicians will also need training in how these retrofit furnaces differ from standard furnaces. Better installation instructions are needed to help size, install, set up, and troubleshoot the retrofit furnaces.

The self-charging batteries used on one of the retrofit models are a promising advance but need to be more reliable and come with clearer operating instructions. They had trouble holding charge and were difficult to recharge. The manufacturer has promised improvements in the battery operation, but it will need to be tested and deemed reliable before this technology can be recommended for general use.

Noise levels from these fan-type retrofit furnaces was sometimes unacceptably high, not surprising for occupants who are used to the relatively quiet gravity furnaces when presented with a fan-type furnace. These fan-type furnaces do not currently report on noise levels. It is recommended they strive to adhere to levels mandated for intermittent indoor fans

Thermostats and controls for the retrofit wall furnaces need to be more instantly responsive to occupants' changes of setting, and furnaces should turn on and off more quickly in response to indoor temperatures. These fan-type retrofit furnaces distribute heat differently from gravity furnaces. The use of wireless thermostats and/or temperature sensors could give more representative control over occupant comfort than a traditional wall thermostat.

Next Steps

Manufacturers need to address the operational issues identified in this report to improve the marketability of these advanced wall furnace products. Simple changes to thermostats and their control logic can improve the comfort delivery of these furnaces. Improvements to self-charging batteries are already underway. Manufacturers also need to measure, reduce, and report fan noise.

Future wall furnace research should concentrate on verifying the savings results found in this project, studying effects on indoor air quality in more depth, and testing future iterations of these furnace products with improved batteries, reduced noise levels, and better controls.

Wall furnace costs should also be reinvestigated after these advanced furnaces have been on the market for a couple of years.

One more potential next step in the study of retrofit wall furnaces would be to compare them to heat pumps, either thru-the-wall packaged terminal heat pumps (PTHPs) or mini-split heat pumps. As it involves fuel switching, this comparison becomes a complex analysis that would include:

- Heating season operating analysis, including performance degradation of heat pumps in colder conditions
- Cooling season operating analysis, based on supplanting any existing cooling systems and introducing new mechanical cooling to some buildings currently without it
- Load shape and time of use analyses
- Electricity generation mix in various regions for comparison of site and source emissions, with attention paid to the location of electrical generation
- Projections of electricity and natural gas costs
- Equipment costs
- Installation costs, including costs of removal wall furnaces with repairs to interior walls and roof, and installation of new heat pumps
- Comparison of noise levels, comfort delivery, and controls
- Effective useful life of equipment
- Refrigerant GWP and the potential for refrigerant leaks from heat pumps

Acknowledgements

The authors thank the California Energy Commission for their funding and support, as well as Southern California Gas Company for their partial sponsorship of this research, and Williams Comfort Products for providing some of the retrofit furnaces.

Thanks also to the members of this project's Technical Advisory Committee:

Jeff Horn, Alan D. Leung, and Eric Kirchhoff of the Southern California Gas Company
Francois Rongere of Pacific Gas and Electric
Helcio Blum of Lawrence Berkeley National Laboratory
Nick Dirr of the Association for Energy Affordability, Inc.
Perry Glenn of the Retirement Housing Foundation
Mary Jo Gentry and Ruth Ann Davis-McElwee of Williams Comfort Company

References

ANSI Z21.49 1995. ANSI Z21.49 – Gas-Fired Gravity and Fan Type Vented Wall Furnaces. https://standards.globalspec.com/std/119007/ansi-z21-49. American National Standards Institute.

ANSI Z21.86 2016. ANSI Z21.86-2016/CSA 2.32-2016 - Vented Gas-Fired Space Heating Appliances. https://webstore.ansi.org/Standards/CSA/ANSIZ21862016CSA32. American National Standards Institute.

CARB 2022. Air Quality Data (PST) Query Tool, Special Reports Tab. https://www.arb.ca.gov/aqmis2/aqdselect.php?tab=specialrpt.

CARB CO 2022. Carbon Monoxide & Health. https://ww2.arb.ca.gov/resources/carbon-monoxide-and-health. California Air Resources Board.

CARB NOx 2022. Nitrogen Dioxide & Health. https://ww2.arb.ca.gov/resources/nitrogen-dioxide-and-health. California Air Resources Board.

CARB PM 2022. Inhalable Particulate Matter and Health (PM2.5 and PM10). https://ww2.arb.ca.gov/resources/inhalable-particulate-matter-and-health. California Air Resources Board.

CARB SIP 2022. Proposed 2022 State Strategy for the State Implementation Plan, August 12, 2022. https://ww2.arb.ca.gov/sites/default/files/202211/Proposed_2022_State_SIP_Strategy.pdf. California Air Resources Board.

CFR 430.32 (i)(1) 2022. Code of Federal Regulations Title 10 Chapter II Subchapter D part 430 Subpart C Section 430.32 (i) (1) Energy and water conservation standards and their compliance dates, Vented home heating equipment manufactured on or after January 1, 1990 and before April 16, 2013. https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-430/subpart-C/section-430.32. National Archives.

CFR 430.32 (i)(2) 2022. Code of Federal Regulations Title 10 Chapter II Subchapter D part 430 Subpart C Section 430.32 (i) (2) Energy and water conservation standards and their compliance dates, Vented home heating equipment manufactured on or after April 16, 2013. https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-430/subpart-C/section-430.32. National Archives.

CFR 60.5474 (b)(4) 2022. Code of Federal Regulations Title 40 Chapter I Subchapter C Part 60 Subpart QQQ 60.5474 (b) (4) What standards and requirements must I meet and by when? 2016 small forced-air furnace particulate matter emission limit. https://www.ecfr.gov/current/title-40/chapter-l/subchapter-C/part-60/subpart-QQQQ. National Archives.

CFR 60.5474 (b)(6) 2022. Code of Federal Regulations Title 40 Chapter I Subchapter C Part 60 Subpart QQQ 60.5474 (b) (6) What standards and requirements must I meet and by when? 2020 forced-air furnace particulate matter emission limit.

https://www.ecfr.gov/current/title-40/chapter-I/subchapter-C/part-60/subpart-QQQQ. National Archives.

NOAA 2022. Data Tools: Local Climatological Data (LCD). https://www.ncdc.noaa.gov/cdo-web/datatools/lcd. National Oceanic and Atmospheric Administration.

NSRDB 2022. NSRDB: National Solar Radiation Database, https://nsrdb.nrel.gov. National Renewable Energy Laboratory, US Department of Energy.

SCAQMD 2021. Rule 1111. Reduction of NOx Emissions from Natural-Gas Fired, Fan-Type Central Furnaces, http://www.aqmd.gov/docs/default-source/rule-book/reg-xi/rule-1111.pdf. South Coast Air Quality Management District.

SJVAPCD 2020. Rule 4905 Natural Gas-Fired, Fan-Type Central Furnaces. https://www.valleyair.org/rules/currntrules/Rule4905.pdf. San Joaquin Valley Air Pollution Control District.

US EIA #1 2023. California Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet). https://www.eia.gov/dnav/ng/hist/n3010ca3m.htm. US Energy Information Administration.

US EIA #2 2023. California Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot). https://www.eia.gov/dnav/ng/hist/nga_epg0_vgth_sca_btucfa.htm. US Energy Information Administration.

US EIA #3 2023. Average Price of Electricity to Ultimate Customers by End-Use Sector and State, https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a. US Energy Information Administration.

US EPA CO 2022. Carbon Monoxide's Impact on Indoor Air Quality. https://www.epa.gov/indoor-air-quality-iaq/carbon-monoxides-impact-indoor-air-quality. US Environmental Protection Agency.

US EPA Indoor PM 2022. Indoor Particulate Matter. https://www.epa.gov/indoor-air-quality-iaq/indoor-particulate-matter. US Environmental Protection Agency.

US EPA NAAQS 2022. National Ambient Air Quality Standards Tables. https://www.epa.gov/criteria-air-pollutants/naaqs-table, US Environmental Protection Agency.

US EPA NOx 2022. Nitrogen Dioxide's Impact on Indoor Air Quality. https://www.epa.gov/indoor-air-quality-iaq/nitrogen-dioxides-impact-indoor-air-quality. US Environmental Protection Agency.

Project Deliverables

The following project deliverables, including interim project reports, are available upon request by submitting an email to ERDDpubs@energy.ca.gov:

- Baseline Wall Furnace Laboratory Test Report Improving the Performance of Wall Furnaces in California
- Retrofit Wall Furnace Laboratory Test Report Improving the Performance of Wall Furnaces in California
- Baseline Wall Furnace Field Monitoring Report Improving the Performance of Wall Furnaces in California
- Retrofit Wall Furnace Field Monitoring Report Improving the Performance of Wall Furnaces in California
- Wall Furnace Technology Transfer Report Improving the Performance of Wall Furnaces in California
- Final Wall Furnace Report Improving the Performance of Wall Furnaces in California

Appendix A: Related Efficiency, Emissions, and Indoor Air Quality Information

Wall Furnace Characteristics

A wall furnace is a compact device used to heat one or two rooms. Because they are less expensive, simpler to install, and take up less space than a central ducted furnace, they are used in multifamily apartment complexes and smaller single-family homes. Wall furnaces are typically installed within the stud cavity of an interior wall. They exhaust combustion gases through a flue stack running vertically up to a roof penetration. They use continuously operating pilot lights to fire the main burner when there is a call for heating, and usually do not even need an electrical connection.

Wall furnaces are categorized by how they distribute heat, where their combustion air comes from, how they ignite the burner, and whether they use condensing technology. Heated air from wall furnaces can be distributed in two ways. **Gravity** furnaces heat the air around the furnace, causing it to rise and distribute itself throughout a space naturally. This gravity-induced air flow can be supplemented by a booster fan, with the fan separately connected to AC power. **Fan-type** wall furnaces integrate a fan directly into the wall furnace unit to distribute heated air. The energy used by these fans can vary from 0.8 to 5 amps of single-phase AC current at 120 V depending on the capacity of the wall furnace and the efficiency of the fan.

Wall furnace combustion air is also handled in two ways. A **vented** or **top vent furnace** draws combustion air from inside the house, then exhausts combustion gases directly to the outside. This furnace is located between the studs of an interior wall, and exhaust gases are sent through a flue of six or eight inches in diameter that travels vertically through the wall cavity to the roof. In contrast, **direct vent** furnaces draw combustion air from outside. They are placed in an outside wall to keep their intake ducts short, although they can be installed in an inside wall by using the proper duct extensions. Exhaust gases can also be sent outside horizontally through the wall or vertically through the wall cavity to the roof.

Three different technologies exist to ignite wall furnaces. The oldest and least efficient ignition technology is a **standing pilot**. This device uses a small burner that stays lit continually, ready to ignite the main burner whenever there is a call for heating. The standing pilot stays on by heating a thermopile which sends current to keep the pilot gas valve open. If the pilot goes out the thermopile cools off and stops sending current, and the pilot gas will stop flowing. An **intermittent pilot**, developed after the oil crisis of the 1970s, is lit only when a call for heating is made. The intermittent pilot uses an electronic spark to first light a pilot flame and then the pilot flame lights the main burner. Use of an intermittent pilot is said to reduce furnace energy use by about 5% on average. A **hot surface igniter** also uses electricity to light the furnace, but it lights the burner directly by heating a silicon nitride ceramic probe to 2000-2500°F. While heating up, the hot surface igniter draws 2 to 4 amps of current at 120 V.

While standard furnaces vent hot combustion gases outside, **condensing** furnaces run combustion air through a heat exchanger to heat incoming air. This cools the exhaust to

temperatures under 100°F so that its water vapor condenses into a liquid. Condensing furnaces must be connected to drains so the condensate water is removed from the building. Additionally, furnaces can be either **single-sided** to serve just one room, or **double-sided** to serve rooms on either side of the wall in which it is installed.

Wall Furnace Efficiency Standards

From 1982 through 1995, wall furnaces were regulated under ANSI Z21.49 for Gas-Fired Gravity and Fan Type Vented Wall Furnaces (ANSI Z21.49 1995). In 1996, ANSI Z21.49 was made inactive and ANSI Z21.86 for Vented Gas-Fired Space Heating Appliances (ANSI Z21.86 2016) became the regulating standard for wall furnaces. This standard was most recently updated in 2016.

Both the Z21.49 and Z21.86 standards mandated that wall furnace nameplates list their input and output capacity based on standard test methods. The latest Z21.86 standard mandates for thermal efficiency (output capacity divided by input capacity) are listed in Table 41. The date when these minimum thermal efficiency standards were first introduced was unable to be confirmed but they were probably part of the ANZI Z21.49-1986 update.

Table 41: Minimum Wall Furnace Thermal Efficiency Requirement from ANSI Z21.86-2016

	Gravity Wall Furnaces	Fan-Type Wall Furnaces
Minimum Thermal Efficiency	70%	75%

In addition, minimum Annual Fuel Utilization Efficiency (AFUE) levels for wall furnaces are mandated under the Code of Federal Regulations for furnaces manufactured after 1990 (CFR 430.32 (i) (1) 2022) and furnaces manufactured after 2013 (CFR 430.32 (i) (2) 2022). Table 42 lists the current minimum AFUE requirements for new wall furnaces. AFUE minimums were raised by at least 2% for furnaces manufactured after 2013.

Table 42: Minimum AFUE Requirements for Wall Furnaces manufactured after January 1, 1990 and April 16, 2013

Furnace Type	Input Capacity	AFUE 1990	AFUE 2013
Gas Wall Gravity	up to 10,000 Btu/hr	59%	
Gas Wall Gravity	over 10,000 up to 12,000 Btu/hr	60%	-
Gas Wall Gravity	over 12,000 up to 15,000 Btu/hr	61%	65%
Gas Wall Gravity	over 15,000 up to 19,000 Btu/hr	62%	-
Gas Wall Gravity	over 19,000 up to 27,000 Btu/hr	63%	-
Gas Wall Gravity	over 27,000 up to 46,000 Btu/hr	64%	66%
Gas Wall Gravity	over 46,000 Btu/hr	65%	67%
Gas Wall Fan-Type	up to 42,000 Btu/hr	73%	75%
Gas Wall Fan-Type	over 42,000 Btu/hr	74%	76%

Thermal efficiency and AFUE are metrics for a furnace's efficiency, but they represent different furnace operations. Thermal efficiency represents the full-load performance of a system, while AFUE represents the performance over a typical range of operating conditions. Many of the baseline furnaces in this study were manufactured before AFUE ratings were required. While

all rated and tested AFUE values are reported, furnace efficiency comparisons rely mostly on thermal efficiency values.

Wall furnaces are located inside the building envelope, and all top vent furnaces use indoor air for combustion. This means that their performance tends to stay relatively constant under different weather conditions as compared to furnaces that sit in unconditioned or semi-conditioned spaces. It also means that laboratory-measured efficiencies should be fairly good job of predicting actual efficiency of wall furnaces as they operate in the field.

Related Emissions and Indoor Air Quality Guidelines

Like all gas burning equipment, even properly operating wall furnaces produce low levels of CO, NOx, and particulate matter emissions. As with all primary gas space heating equipment in the state of California, emissions must be vented to the outside to prevent the accumulation of indoor pollutants.

There are no federal or California limits on flue gas emissions or indoor pollutants generated by wall furnaces. However, the Code of Federal Regulations limits particulate matter emissions from wood-burning residential forced-air furnaces. Residential forced-air furnaces are defined for this standard as fuel burning devices designed to burn wood or wood pellet fuel that warms a space other than the space where the furnace is located. Wall furnaces do not meet this definition because they burn natural gas, and because heat the space where they are installed.

For reference, forced-air furnaces manufactured after May 16, 2015 were required to emit no more than 0.93 lbm/MMBtu of particulate matter (CFR 60.5474 (b) (4) 2022), defined as the total of PM2.5 and PM10 particles. This limit was lowered to 0.15 lbm/MMBtu in total particulate matter for forced-air furnaces manufactured after May 15, 2020 (CFR 60.5474 (b) (6) 2022).

In California, the South Coast Air Quality Management District (SCAQMD) and the San Joaquin Valley Air Pollution Control District (SJVAPCD) limit NOx emissions from natural gasfired fan-type central furnaces distributed or sold in their territories. These standards do not specifically define a central furnace. It is typically a furnace that heats air in one place and circulates it through ducts to other places, so these rules do not apply to wall furnaces. For reference, both the SCAQMD Rule 1111 (SCAQMD 2021) and SJVAPCD Rule 4905 (SJVAPCD 2020) require furnaces to keep NOx emissions, on a basis of NO2, below 14 ng/Joule (0.033 lbm/MMBtu).

The US Environmental Protection Agency does not regulate indoor air quality, but they have characterized typical levels of carbon monoxide found in homes (US EPA CO 2022). They have not agreed upon standards for nitrogen oxides (US EPA NOx 2022) or particulate matter (US EPA PM 2022) within homes but have laid out acceptable levels for these pollutants in outside air over different time periods.

The US Environmental Protection Agency has developed guidelines for outdoor air quality, the National Ambient Air Quality Standards (US EPA NAAQS 2022), with acceptable limits of outdoor air pollutants in terms of averages over different time periods. The California Air Resources Board has also developed standards for outdoor air quality that are sometimes more stringent than federal standards, the California Ambient Air Quality Standards (CARB CO 2022, CARB NOx 2022, CARB PM 2022).

Table 43 summarizes the regulations, standards, and guidelines for residential furnaces and indoor air quality, as well as some outdoor air pollution standards. Although none of these standards applies to wall furnaces, they serve as reference values for this project's emissions and indoor air quality analyses. Note that no regulations, standards, or guidelines were identified that help characterize hydrocarbon emissions.

Table 43: Emissions and Indoor Air Quality Regulations, Standards and Guidelines

Rule	Equipment	co	NOx	PM2.5 & PM10
Code of Federal Regulation (CFR)	Residential forced-air furnaces, wood-burning	n/a	n/a	0.93 lbm/MMBtu, 2015 0.15 lbm/MMBtu, 2020
SCAQMD Rule 1111 & SJVAPCD Rule 4905 (SCAQMD)	Central furnaces	n/a	0.033 lbm/MMBtu (14 nanograms/Joule)	n/a
US EPA reference levels of typical indoor air pollutants (US EPA)	Indoor air quality in homes	0 - 5 ppm normal 5 - 15 ppm near properly adjusted gas stove 30 ppm or more near improperly adjusted gas stoves	n/a	n/a
National Ambient Air Quality Standards (NAAQS)	Outside air	9 ppm 8 hours 35 ppm 1 hour	100 ppb 1 hour 53 ppb 24 hours	PM2.5 35 ug/m ³ 24 hours PM10 150 ug/m ³ 24 hours
California Ambient Air Quality Standards (CAAQS)	Outside air	9 ppm 8 hours 20 ppm 1 hour	180 ppb I hour 30 ppb 24 hours	PM2.5 none 24 hours PM10 50 ug/m3 24 hours

On August 12, 2022, the California Air Resources Board released a Proposed 2022 State Strategy for the State Implementation Plan (CARB SIP 2022), a planning document identifying strategies and controls needed to meet more stringent requirements set by the US Environmental Protection Agency for ground level ozone in 2015. Nineteen areas in California are in nonattainment for the US EPA 8-hour ozone levels of 70 ppb. Controlling nitrogen oxides emissions, a precursor emission that facilitates ozone production, is critical for reaching attainment. Much of this plan focuses on reduction of mobiles sources of air pollution from onroad vehicles, off-road vehicles and equipment, federally regulated trains, planes and oceangoing vessels, consumer products, and pesticides.

The plan also includes a commitment to implement a zero-emission standard for space and water heaters. This standard has yet to be codified into any rules or regulations, and it is not clear if developed rules will apply to replacement of existing equipment or to non-central space heating equipment. The current NOx emission standard of 0.033 lbm/MMBtu (SCAQMD 2021, SJVAPCD 2020) in two California pollution control districts currently applies only to central furnaces and not wall furnaces. However, this standard may be made more strenuous or expanded to cover more regions in California or extended to apply to wall furnaces in the future.

Appendix B: Baseline Field Monitoring Results Summary

The baseline wall furnaces studied in this project were existing furnaces that were in service in California homes. The furnaces were monitored in the field over a heating season, then were removed and shipped to Des Plaines, IL facilities for testing in GTI Energy's Residential and Commercial Equipment laboratory. Ten baseline vented gravity wall furnaces were tested:

- Two in side-by-side apartments in Hayward (apartments 3 and 4)
- Four in a retirement apartment community in Los Angeles (104, 105, 106, and 107)
- One in a single-family home in Oakland (SFH)
- Three in multifamily apartments in Sacramento (4, 15, and 19)

These ten existing wall furnaces were all vented gravity non-condensing furnaces with standing pilots. They ranged in age from about 10 years to more than 40 years, with input capacities between 25,000 and 50,000 Btu/hr and thermal efficiencies from 50% to 74%. The Oakland furnace was a double-sided unit serving two rooms, while all other furnaces were single-sided units.

The field monitoring performed by the research team included:

- Physical inspection of the wall furnaces and combustion safety checks
- Heating season measurement of furnace operation
- Heating season measurement of indoor temperature and humidity
- Heating season measurement of indoor air quality (IAQ) in terms of concentrations of carbon monoxide, nitrogen oxides, and particulate matter (PM2.5 and PM10)

The operation of existing baseline wall furnaces was monitored at ten sites. Table 44 summarizes the operating hours per day, cycles per day and minutes per cycle for these furnaces.

Table 44: Summary of Baseline Wall Furnace Operation

		-	Average Operating	Average Furnace	Average Furnace
Site	Manufacturer	Model	Hours per Day	Cycles per Day	Cycle Minutes
Hayward 3	Perfection Products	PW8G25SEN #1	1.36	1.77	46.1
Hayward 4	Perfection Products	PW8G25SEN #2	0.55	0.92	35.9
LA 104	Williams	25GV-A1	0.07	0.30	13.8
LA 105	Williams	35GV-C #1	0.89	1.91	28.1
LA 106	Williams	35GV-C #2	0.34	1.52	13.5
LA 107	Williams	RMG35-IN	0.07	0.25	17.3
Oak SF	Williams	5009622	0.67	1.08	37.2
Sacto 4	Holly General	35S-D #1	1.41	1.73	48.8
Sacto 15	Holly General	35S-D #2	2.18	3.77	34.6
Sacto 19	Williams	3509622	2.17	4.18	31.3
	Average		0.97	1.73	33.6

The Los Angeles furnaces were used less often, while the Sacramento furnaces operated for the greatest number of hours per day. Furnace cycles also tended to be shortest in Los Angeles at less than 30 minutes per cycle, and over 30 minutes in Northern California On average, furnaces operated for an hour a day, cycling 1.7 times at 34 minutes per cycle. These averages do not tell the whole story, though. Both operating hours and cycle length tend to increase when outdoor temperatures get colder. Based on the average daily outdoor temperature, wall furnace operating hours in Northern and Southern California and cycle length throughout all of California can be estimated as:

- NorCal Daily Operating Hours = 8.7 0.146 x Average Daily Outdoor Temperature, °F,
- SoCal Daily Operating Hours = 3.2 0.047 x Average Daily Outdoor Temperature, °F
- Cycle Minutes = 63.5 − 0.64 x Average Daily Outdoor Temperature, °F

Indoor pollutant levels were also measured during field monitoring, and the average and maximum indoor pollutant concentrations are listed in Table 45 and Table 46.

Table 45: Average Carbon Monoxide and Nitrogen Oxides Concentrations (top) and Average Particulate Matter PM2.5 and PM10 Concentrations (bottom) at All Sites when Baseline Furnaces are On and Off

		0			J		1005 u. 0	• • •		<u> </u>	1
AVERAGES	Regional	co o	ff	CO On	CO On-Of	ff	Regional	NO	x Off	NOx On	NOx On-Off
Field Site	CO ppmx10	ppmx	10	ppmx10	Difference	%	NOx ppb/10	рр	b/10	ppb/10	Difference %
Hayward 3	4.7	23.5	5	23.4	0%		2.0	3	2.3	30.9	-4%
Hayward 4	4.7	9.8		12.4	26%		2.0	2	2.0	23.1	5%
LA 104	5.6	17.7	7	43.3	145%		4.1	2	4.8	45.2	83%
LA 105	5.2	24.2	2	23.9	-1%		3.7		2.8	3.7	31%
LA 106	5.2	17.3	3	16.5	-5%		3.7		1.3	2.0	51%
LA 107	5.4	31.2	2	31.4	1%		3.9	2	6.2	24 .5	-7%
Oak SF	4.7	4.2		5.5	30%		2.5	=;	5.3	3.3	-37%
Sacto 4	4.1	10.4	1	10.8	4%		2.4	4	9.4	47.7	-4%
Sacto 15	3.8	9.3		10.8	16%		2.2	:	1.8	2.4	30%
Sacto 19	3.9	9.1		10.9	19%		2.1	•	7.9	7.5	-5%
Average	4.7	15.	7	18.9	21%		2.9	1	7.4	19.0	9%
Comparative Limit	in			pmx10 djusted (l	JS EPA)		2	24 hc	•	pb/10 side (CAAC	QS)
AVERAGES	Regi	ional	PM:	2.5 Off	PM2.5 On	PI	M2.5 On-O	ff	PM1	0 Off	PM10 On
Field Site	PM2.5	ug/m3	นยู	g/m3	ug/m3	D	oifference %	%	ug/	ug/m3	
Hayward 3	9	.8		6.0	3.0		-50%	6 6		.5	0.1
Hayward 4	9	.8		5.9	3.1		-48%		6	.5	3.2
LA 104	13	3.1	1	10.9	5.1		-53%		9	.7	4.7
LA 105	12	2.5	2	26.3	33.8		29%		29	9.3	36.8
LA 106	12	2.3		15.5	21.7		40%		1	7.5	23.6
LA 107	12	2.7		.2.8	1 3.3		4%			5.0	38.0
Oak SF		.0		5.7	9.4		65%		6	.2	10.1
Sacto 4		5.1	3	33.1	28.4		-14%		37	7.1	31.0
Sacto 15	13	3.5	1	L0.2	9.1		-11%		10	0.3	9.1
Sacto 19	1	5.0	2	25.5	28.0	10%			26	5.5	28.8
Average	12	2.2	1	5.2	1 5.5		2%		16	5.5	18.5
Comparativ Limit	ve	35 ug/m3 50 ug/m3 24 hour outside (NAAQS) 24 hour outside (

As seen in Table 45, the overall *average* indoor concentrations of CO, NOx, PM2.5, and PM10 increased by 21%, 9%, 2% and 13% respectively when the furnaces were operating compared to when they were off. However, there is a lot of variability in the averages from site to site. Half of the sites saw average indoor pollutants increase when the furnaces run, either due to flue gas emissions leaking into the space, pollutants being drawn into the living room from other spaces, or existing pollutants being stirred up by air circulation. The other half of the wall furnaces saw average indoor pollutant levels decrease, most likely because they draw air from the indoor space for combustion.

Table 46: Maximum Carbon Monoxide and Nitrogen Oxides Concentrations (top) and Maximum Particulate Matter PM2.5 and PM10 Concentrations (bottom) at All Sites when Baseline Furnaces are On and Off

MAXIMUMS	Regional CO	соо	ff	CO On	CO On-Of	f Regional	NOx Off	NOx On	NOx On-Off
Field Site	ppmx10	ppmx	10	ppmx10	Difference	% NOx ppb/10	ppb/10	ppb/10	Difference %
Hayward 3	6.2	49.1		34.1	-31%	3.1	93.3	57.2	-39%
Hayward 4	6.2	43.2		20.1	-53%	3.1	61.7	29.6	-52%
LA 104	7.8	84.9)	47.4	-44%	7.6	117.8	48.0	-59%
LA 105	7.6	24.2	<u>.</u>	23.9	-1%	7.1	2.8	3.7	31%
LA 106	7.4	104.		25.3	-76%	7.0	9.9	2.9	-70%
LA 107	7.6	50.9		31.4	-38%	7.3	67.2	24.5	-64%
Oak SF	7.0	12.5		7.4	-41%	5.1	26.4	7.5	-72%
Sacto 4	5.6	30.0		17.5	-42%	4.0	138.5	74 .2	-46%
Sacto 15	5.2	29.9		19.5	-35%	3.7	6.5	4.1	-38%
Sacto 19	5.1	26.4		18.8	-29%	3.3	24.3	13.3	-45%
Average	4.9	45.6	5	24.5	-46%	5.1	5 4.9	26.5	-52%
Comparative Limit	ins			ppmx10 adjusted (l	JS EPA)		18 p 1 hour out	pb/10 side (CAAC	S)
MAXIMUM	S Regio	onal	PM	12.5 Off	PM2.5 On	PM2.5 On-C	off PM1	.0 Off	PM10 On
Field Site	PM2.5	ug/m3	u	ıg/m3	ug/m3	Difference	% ug,	/m3	ug/m3
Hayward 3	13	.3	1	106.3	9.6	-91%	11	2.1	0.1
Hayward 4	13	.3	1	132.0	7.9	-94%	15	1.2	8.2
LA 104	16	.5		62.2	5.9	-91%	52	2.1	5.4
LA 105	14	.7		26.3	33.8	29%	29	9.3	36.8
LA 106	15	.5	1	<mark>197</mark> .4	33.6	-83%	22	1.6	36.6
LA 107	15	.8		22.5	13.3	-41%	83	3.4	38.0
Oak SF	8.	7		44.3	29.6	-33%	48	3.7	31.1
Sacto 4	22	.8	(1)	353.7	91.2	-74%	40	3.6	100.3
Sacto 15	19	.4	1	119.9	25.3	-79%	12	1.0	25.5
Sacto 19	20	.1	2	277.8	108.5	-61%	30	6.3	112.2
Average	16	.0	1	34.2	35.9	-73%	15	2.9	39.4

In contrast, the *maximum* indoor pollutant concentrations listed in Table 46 decreased at all sites when the furnaces operated. The overall maximum indoor concentrations of CO, NOx, PM2.5, and PM10 decreased by 46%, 52%, 73% and 74% respectively when the furnaces were operating compared to when they were off. The wall furnaces significantly improve indoor air quality by reducing maximum levels of indoor air pollutants, most likely by drawing air for combustion from the indoor space.

Appendix C: Retrofit Field Monitoring Results Summary

The retrofit wall furnaces studied in this project were installed in California homes in place of existing baseline furnaces. The furnaces were monitored in the field over a heating season. Additional samples of the retrofit furnaces were shipped to Des Plaines, IL facilities for testing in GTI Energy's Residential and Commercial Equipment laboratory (documented in the Baseline Wall Furnace Laboratory Testing Report for this project).

Nine retrofit wall furnaces were tested:

- Two 1753012 direct vent condensing furnaces side-by-side apartments in Hayward (apartments 3 and 4)
- Four AC2030TN vented fan-type furnaces in a retirement apartment community in Los Angeles (104, 105, 106, and 107)
- One AC3040TN vented fan-type double-sided furnace in a single-family home in Oakland (SFH)
- Two TG2030TN vented fan-type self-powered furnaces in multifamily apartments in Sacramento (4 and 19), with apartment 19's furnace operated by two different tenants

The field monitoring performed by the research team included:

- Heating season measurement of furnace operation
- Heating season measurement of indoor temperature and humidity
- Heating season measurement of indoor air quality (IAQ) in terms of concentrations of carbon monoxide, nitrogen oxides, and particulate matter (PM2.5 and PM10)

The operation of retrofit wall furnaces was monitored at nine sites. Table 47 summarizes the operating hours per day, cycles per day and minutes per cycle for these furnaces.

Table 47: Summary of Retrofit Wall Furnace Operation

Model	Field Sites	Operating Hrs/Day	Cycles/Day	Cycle Minutes
1753012 (condensing direct vent)	Hayward 3	0.13	0.24	32.5
1753012 (condensing direct vent)	Hayward 4	0.59	0.80	44.0
AC2030TN (single-sided low NOx)	LA 104	0.06	0.28	13.0
AC2030TN (single-sided low NOx)	LA 105	0.06	0.31	11.0
AC2030TN (single-sided low NOx)	LA 106	0.24	0.34	41.6
AC2030TN (single-sided low NOx)	LA 107	0.09	0.27	19.0
AC3040TN (double-sided low NOx)	Oakland SFH	0.63	0.51	73.6
TG2030TN (self-powered low NOx)	Sacto 4	1.06	1.91	33.5
TG2030TN (self-powered low NOx)	Sacto 19	2.43	3.61	40.3
TG2030TN (self-powered low NOx)	Sacto 19 T2	1.98	2.14	55.5
	Average	0.89	1.23	43.3

The Los Angeles furnaces were used less often, while the Sacramento furnaces operated for the greatest number of hours per day. On average, furnaces operated for 0.9 hours a day, cycling 1.2 times a day at 43 minutes per cycle. These averages do not tell the whole story, though. Both operating hours and cycle length tend to increase when outdoor temperatures get colder. Based on the average daily outdoor temperature, wall furnace operating hours and cycle length can be estimated for different California locations as:

NorCal Coastal Daily Operating Hours = 4.56 - 0.076 x Average Daily Outdoor Temperature °F NorCal Inland Daily Operating Hours = 7.82 - 0.131 x Average Daily Outdoor Temperature, °F SoCal Daily Operating Hours = 0.66 - 0.010 x Average Daily Outdoor Temperature, °F Cycle Minutes = 63.5 - 0.64 x Average Daily Outdoor Temperature, °F

Indoor pollutant levels were also measured during field monitoring, and the average and maximum indoor pollutant concentrations are listed in Table 48 and Table 49.

Table 48: Average Carbon Monoxide and Nitrogen Oxides Concentrations (top) and Average Particulate Matter PM2.5 and PM10 Concentrations (bottom) at All Sites when Retrofit Furnaces are On and Off

AVERAGES	Regional CO	CO Off	CO Or			Regional I		NOx Off		NOx On-Off	
Field Site	ppmx10	ppmx10	ppmx1			ppb/10		ppb/10		Difference %	
Hayward 3	3.9	11.6	12.2		5% 1.2			31.4	33.7	7%	
Hayward 4	4.0	8.6	10.4	219	%	1.3		22.1	17.3	-22%	
LA 104	4.7	14.3	0.0	-100	0%	3.2		58.5	23.8	-59%	
LA 105	5.0	12.3	0.0	-100)%	3.5		8.2	1.0	-88%	
LA 106	5.0	13.4	16.6	249	%	3.5		2 5.3	29.3	16%	
LA 107	5.0	29.4	0.0	-100)%	3.5		23.3	1.7	-93%	
Oak SF	5.3	2.1	2.8	319	%	3.2		7.1	7.3	2%	
Sacto 4	4.4	12.5	15.3	229	%	4.7		49.9	54.1	8%	
Sacto 19	6.5	41.7	63.6	539	%	2.2		10.0	9.6	-4%	
Sacto 19 T2	4.4	13.7	15.6	149	%	4.7		10.7	10.3	-4%	
Average	4.8	15.9	13.6	-14	%	3.1		2 4.7	18.8	-24%	
Camananati		50-150	ppmx10				3.0 ppb/10				
Comparative Limit		inside prop	erty adjus	sted				24 hc	ur outside		
Limit		(US	EPA)					(0	CAAQS)		
AVERAGES	Region	al PM2	.5 Off	PM2.5 On	PM2.	5 On-Off	PM:	10 Off	PM10 On	PM10 On-Off	
Field Site	PM2.5 ug	/m3 ug/	/m3	ug/m3	Diffe	rence %	ug/m3		ug/m3	Difference %	
Hayward 3	8.7	29	.4	21.1	-	28%	3	6.0	25.2	-30%	
Hayward 4	8.7	11	L.6	7.7	-	33%	1	3.1	8.0	-38%	
LA 104	9.4		.7	2.2		67%		7.5	2.5	-66%	
LA 105	11.1		9.6	57.7	•	46%	_	4.6	65.0	46%	
LA 106	11.1		L.5	13.0		13%		2.8	14.3	12%	
LA 107	11.1		.5	2.5	-	74%		2.9	3.7	-72%	
Oak SF	10.6).4	20.9		3%		3.3	23.6	1%	
Sacto 4	6.6		.7	26.9		-9%		3.4	29.7	-11%	
Sacto 19	12.5		7.8	37.8		0%		8.4	38.4	0%	
Sacto 19 T2	6.6		9.9	13.6		32%		0.0	13.7	-32%	
Average	9.6	21	L. 6	20.4		-6%	2	4.2	22.4	-7%	
			35 ug/ı	m3					50 ug/m3		
Comparative			_								
Comparative Limit		2	4 hour o	utside				2	4 hour outs	ide	

As seen in Table 48, the overall *average* indoor concentrations of CO, NOx, PM2.5, and PM10 decreased by 14%, 24%, 6% and 7% respectively when the furnaces were operating compared to when they were off. However, there is a lot of variability in the averages from site to site. About half of the sites saw average indoor pollutants increase when the furnaces run, either due to flue gas emissions leaking into the space, pollutants being drawn into the living room from other spaces, or existing pollutants being stirred up by air circulation. The other half of the wall furnaces saw average indoor pollutant levels decrease, most likely because they draw air from the indoor space for combustion.

Table 49: Maximum Carbon Monoxide and Nitrogen Oxides Concentrations (top) and Maximum Particulate Matter PM2.5 and PM10 Concentrations (bottom) at All Sites when Retrofit Furnaces are On and Off

MAXIMUMS	Regional CO	СО	Off	CO	On	CO Or	n-Off	Regional I	NOx	NOx Of	f	NOx On	NOx On-Off
Field Site	ppmx10	ppm	1x10	ppm	x10	Differe	rence % ppb/10			ppb/10		ppb/10	Difference %
Hayward 3	5.8	49	9.1	34.	1	-31% 2.2				93.3		57.2	-39%
Hayward 4	5.8	37	7.5	12.	.5	-67	%	2.2		49.6		20.3	-59%
LA 104	7.7	34	l.1	0.0	0	-100)%	7.7		110.8		23.8	-79%
LA 105	7.2	41	L.7	0.0	0	-100)%	7.2		31.6		1.0	-97%
LA 106	7.2	59	9.5	16.	.9	-72	%	7.2		63 .8		30.8	-52%
LA 107	7.2	67	7.2	0.0	0	-100)%	7.2		69.0		1.7	-97%
Oak SF	7.5	9.	.0	3.6	6	-60	%	5.3		15.9		9.4	-41%
Sacto 4	6.0	29	9.0	19.	.3	-34	%	5.9		122.5		72. 8	-41%
Sacto 19	7.6	26	0.3	205	.6	-21	%	3.5		24.1		16.5	-32%
Sacto 19 T2	6.0	35	5.8	24.	.5	-32	%	5.9		26.0		13.1	-50%
Average	6.8	62	2.3	31.	.6	-49	%	5.4		60.7		24.7	-59%
Comparative Limit			e prop	ppmx1 erty ad EPA)		t			18 ppb/10 1 hour outside (CAAQS)				
MAXIMUMS	Regiona	al	PM2.	5 Off	PM2	2.5 On	PM2.	5 On-Off	PΝ	110 Off	PM	110 On	PM10 On-Off
Field Site	PM2.5 ug/	/m3	ug/	m3	ug	g/m3	Diffe	rence %	u	g/m3	uį	g/m3	Difference %
Hayward 3	11.1		106	5.3	Ç	9.6	-	91%	1	12.1		0.1	-100%
Hayward 4	11.2		195	5.3		.2.3		94%	_	224.6] :	12.7	-94%
LA 104	12.9		17	.7		2.2	-	87%		19.5	_	2.5	-87%
LA 105	14.0		294	1.0		8.3		80%		31.5		65.7	-80%
LA 106	14.0		62	.6	1	.3.3	-	79%	_	69.2		14.6	-79%
LA 107	14.0		69	.9	7	2.5	-	96%		92.2		3.7	-96%
Oak SF	12.7		76		2	9.5	-	62%		87.7	3	33.9	-61%
Sacto 4	9.4		226	5.8		6.5	-	79%	2	255.6	_	51.7	-80%
Sacto 19	17.8		330		_	29.7		61%		37.3	_	32.5	-61%
Sacto 19 T2	9.4		244	1.2	2	9.4	-	88%	2	244.2	1	29.4	-88%
Average	12.7		16	2 .4 33.3 -79% 177 .4 34.7						34.7	-80%		
Comparative Limit		35 ug/m3 24 hour outside (NAAQS)								2	24 hc	ug/m3 our outsic CAAQS)	de

In contrast, the *maximum* indoor pollutant concentrations listed in Table 49 decreased at all sites when the furnaces operated. The overall maximum indoor concentrations of CO, NOx, PM2.5, and PM10 decreased by 49%, 59%, 79% and 80% respectively when the furnaces were operating compared to when they were off. The wall furnaces significantly improve indoor air quality by reducing maximum levels of indoor air pollutants, most likely by drawing air for combustion from the indoor space.

Emission rates of carbon monoxide, nitrogen oxides, and hydrocarbons are highly variable from furnace to furnace, and are very different during standby, startup, steady state. Table 50 sums up emissions during different operating modes for the retrofit wall furnaces, calculated from laboratory test results for the actual operation at each site, as well as for normalized operation over 0.9 hours and 1.2 cycles a day.

Table 50: Overall Flue Gas Emission Rates of Retrofit Wall Furnaces during Actual and Normalized Operation

Wall Furnace Tested	g /	Acti	ual Emission R	ates	Normalized Emission Rates			
Model	Field Sites	CO NOx THC Ibm/MMBtu Ibm/MMBtu Ibm/MMBtu		CO lbm/MMBtu	NOx Ibm/MMBtu	THC lbm/MMBtu		
1753012 (condensing direct vent)	Hayward 3	0.022	0.086	0.002	0.021	0.086	0.001	
1753012 (condensing direct vent)	Hayward 4	0.021	0.087	0.001	0.021	0.086	0.001	
AC2030TN (single-sided low NOx)	LA 104	0.114	0.015	0.086	0.073	0.014	0.094	
AC2030TN (single-sided low NOx)	LA 105	0.114	0.015	0.086	0.073	0.014	0.094	
AC2030TN (single-sided low NOx)	LA 106	0.076	0.014	0.093	0.073	0.014	0.094	
AC2030TN (single-sided low NOx)	LA 107	0.114	0.015	0.086	0.073	0.014	0.094	
AC3040TN (double-sided low NOx)	Oakland SFH	0.304	0.040	0.022	0.272	0.039	0.019	
TG2030TN (self-powered low NOx)	Sacto 4	0.036	0.013	0.004	0.031	0.013	0.007	
TG2030TN (self-powered low NOx)	Sacto 19	0.032	0.013	0.005	0.031	0.013	0.007	
TG2030TN (self-powered low NOx) Sacto 19 T2		0.027	0.013	0.012	0.031	0.013	0.007	
	Average	0.086	0.031	0.040	0.070	0.031	0.042	

No single furnace had the highest or lowest emission rates for all three pollutants. This reflects the different operating modes during which carbon monoxide, nitrogen oxides, and hydrocarbons are emitted, as well as the effects that operating hours and cycle lengths have on wall furnace emissions.

There are no standards or limits on carbon monoxide or hydrocarbon emission rates. SCAQMD and SJVAPCD have a 0.033 lbm/MMBtu limit on nitrogen oxides emissions from central furnaces (see Appendix B). Although this standard does not currently apply to wall furnaces, the AC and TG series furnaces were designed to have low NOx emissions. The Los Angeles AC2030TN and Sacramento TG2030TN retrofit wall furnaces would meet this limit, and the Oakland AC3040TN just exceeds this limit. The Hayward condensing 1753012 furnace was not designed for low NOx emissions, and its NOx emissions are more than double the central furnace 0.033 lbm/MMBtu limit.

Retrofit furnaces also exhibited some installation and operation issues:

- Installations may need to include replacement of existing exhaust flues, resizing of the wall cavity, connection to AC power, and/or hookup to a drain for condensing furnaces
- Switching from a gravity furnace to fan-type furnace means the new furnace is
 inherently noisier than the old furnace, although some of these furnaces were deemed
 unacceptably loud by tenants in this study. Manufacturers need to make efforts to keep
 furnace noise below 45 dB, and to report noise levels in their specifications.
- Fan-type furnaces will also distribute heat differently from gravity furnaces, and the thermostat may need to be relocated to better monitor room temperature, or better yet, equip the system with a wireless remote temperature sensor.
- For three of the retrofit models tested, furnace capacity can be adjusted via the thermostat settings, but manufacturers should include thermostat instructions with the wall furnace installation instructions and give guidance about how to optimize capacity.

Appendix D: Baseline Laboratory Testing Results Summary

The baseline wall furnaces studied in this project were existing furnaces that had been in service in California homes. The furnaces were initially monitored in the field over a heating season, then were removed and shipped to Des Plaines, IL facilities for testing in GTI Energy's Residential and Commercial Equipment laboratory. Ten baseline vented gravity wall furnaces were tested:

- Two from side-by-side apartments in Hayward (apartments 3 and 4)
- Four from a retirement community in Los Angeles (apartments 104, 105, 106, and 107)
- One from a single-family home in Oakland (SFH)
- Three from multifamily apartments in Sacramento (apartments 4, 15, and 19)

These ten existing wall furnaces were all vented gravity non-condensing furnaces with standing pilots. These furnaces ranged in age from about 10 years to more than 40 years with rated input capacities between 25,000 and 50,000 Btu/hr and rated thermal efficiencies from 50% to 74%. The Oakland furnace was a double-sided unit serving two rooms, while all other furnaces were single-sided units. After field monitoring each of these furnaces over a winter heating season, they were removed from service and shipped to GTI Energy's Des Plaines facility for laboratory testing.

Laboratory testing included measurement of furnace natural gas flow, electricity use, operating temperatures, and concentrations of carbon monoxide (CO), nitrogen oxides (NOx), and total hydrocarbons (THC) in exhaust gases. The testing protocol covered furnace operation during standby, startup, steady state, and shutdown. Parameters derived from measurements include each furnace's input capacity and pilot gas use, efficiency, and pollutant emission rates.

Table 51 lists the rated and measured natural gas flows of each wall furnace. All but one of the furnaces used less natural gas than their rated input, for an average 89% of rated input. Gas use of the standing pilot was either ~500/750/1000 Btu/hr and tended to be greater for furnaces with larger input capacity.

Table 51: Baseline Wall Furnace Natural Gas Input Rates

	Wall Furnace Te	sted		N	latural Gas	Input	
Manufacturer	Model	Field Site	Age years	Rated Btu/hr	Tested Btu/hr	% Rated Input	Pilot Btu/hr
Perfection Products	PW8G25SEN #1	Hayward 3 Baseline	~40	25000	20280	81%	520
Perfection Products	PW8G25SEN #2	Hayward 4 Baseline	~40	25000	20210	81%	5 <mark>10</mark>
Williams	25GV-A1	LA 104 Baseline	~35	25000	25100	100%	750
Williams	35GV-C #1	LA 105 Baseline	~35	35000	31720	91%	520
Williams	35GV-C #2	LA 106 Baseline	~35	35000	31800	91%	570
Williams	RMG35-IN	LA 107 Baseline	~35	35000	31810	91%	5 <mark>00</mark>
Williams	5009622	Oakland SF Baseline	~15	50000	44500	89%	1090
Holly General	35S-D #1	Sacramento 4 Baseline	40+	35000	31530	90%	720
Holly General	35S-D #2	Sacramento 15 Baseline	40+	35000	29110	83%	710
Williams	3509622	Sacramento 19 Baseline	~10	35000	33800	97%	1050
		Average		33500	30000	89%	690

Table 52 lists the rated and test-derived thermal efficiency and AFUE for each unit. Rated AFUE values are only listed for the two furnaces manufactured after the minimum AFUE reporting requirement was put into place January 1, 1990. Six of the tested furnaces exceeded their thermal efficiency ratings while four did not. Six furnaces also exceeded the 70% minimum thermal efficiency required by the American National Standards Institute regulations (ANSI Z21.86 2016), and five met the 65% minimum AFUE required by the Code of Federal Regulations (CFR 430.32 2022).

Table 52: Baseline Wall Furnace Thermal Efficiency and AFUE

Wall Furnace Tested			Thermal		AFUE	
Manufacturer	Model	Field Site	Rated	Tested	Rated	Tested
Perfection Products	PW8G25SEN #1	Hayward 3	70%	76.3%		70.5%
Perfection Products	PW8G25SEN #2	Hayward 4	70%	71.8%		66.1%
Williams	25GV-A1	LA 104	70%	70.5%		64.4%
Williams	35GV-C #1	LA 105	70%	62.8 %		59.2 %
Williams	35GV-C #2	LA 106	70%	73.6%		69.3%
Williams	RMG35-IN	LA 107	70%	7 5.1%		71.1%
Williams	5009622	Oakland SFH	76%	50. 1%	74.0%	46.0%
Holly General	35S-D #1	Sacramento 4	50 %	3 9.0%		35.7%
Holly General	35S-D #2	Sacramento 15	50 %	60.8 %		56.2 %
Williams	3509622	Sacramento 19	74%	73.2%	72.0%	66.7%
		Average	67.0%	65.3%		60.5 %

Table 53 lists the energy use and emissions for each wall furnace for a typical day of operation as found during field testing of these units, where the furnace cycles 1.5 times a day for 33 minutes per cycle and remains in standby with the pilot light on for the rest of the day. As expected, the largest capacity unit in this study, the 50,000 Btu/hr Oakland unit, would use the most natural gas. The 35,000 Btu/hr Sacramento 19 furnace used a lot of natural gas relative to its capacity due to its high pilot gas use while in standby.

Table 53: Baseline Wall Furnace Energy Use and Emission Rates for a Typical Day of Operation

Wall Furnace Tested			Average Energy Use & Emission Rates at Each Site					
B.Co. of advisor	B 4 a d a l	Field Cite	DI /D:	CO lbm/MMBtu	NOx lbm/MMBtu	THC Ibm/MMBtu		
Manufacturer	Model	Field Site	Btu/Day	ibm/iviivibtu	ibm/iviivibtu	ibm/iviivibtu		
Perfection Products	PW8G25SEN #1	Hayward 3	28782	0.194	0.081	0.054		
Perfection Products	PW8G25SEN #2	Hayward 4	28493	0.037	0.072	0.327		
Williams	25GV-A1	LA 104	38089	0.116	0.063	0.255		
Williams	35GV-C #1	LA 105	38220	0.086	0.075	0.006		
Williams	35GV-C #2	LA 106	39445	0.039	0.059	0.000		
Williams	RMG35-IN	LA 107	37831	0.061	0.071	0.147		
Williams	5009622	Oakland SF	61973	0.333	0.077	0.006		
Holly General	35S-D #1	Sacramento 4	42698	0.067	0.069	0.005		
Holly General	35S-D #2	Sacramento 15	40470	0.596	0.019	0.029		
Williams	3509622	Sacramento 19	52219	0.059	0.090	0.143		
		Average	40822	0.169	0.068	0.087		

There are no regulations for gravity wall furnace emissions, but two California air quality districts limit central furnace nitrogen oxides (NOx) emissions to 0.033 lbm/MMBtu, the South Coast Air Quality Management District's Rule 1111 (SCAQMD 2021) and the San Joaquin Valley Air Pollution Control District's Rule 4905 (SJVAPCD 2020). Only one of the baseline wall furnaces would comply with this limit, the Holly General 35S-D unit from Sacramento 15, one of the two oldest furnaces tested in this project. On average, NOx emissions from these baseline wall furnaces were twice the regulated limit for central furnaces. NOx emissions from these furnaces were generated during active heating operation due to poor control of the fuelair ratio.

Carbon monoxide and hydrocarbon emissions are not regulated for wall furnaces or central furnaces. Laboratory testing showed variation in these emissions between furnaces, with high CO emissions from three of the tested furnaces, and high hydrocarbon emissions from four furnaces. High CO and THC emissions are usually due to incomplete combustion during startup and shutdown, although the Holly General 35S-D #2 furnace produced high CO and THC emissions while actively heating.

Appendix E: Retrofit Laboratory Testing Results Summary

This project tested five retrofit wall furnaces which came directly from the manufacturer, Williams Comfort Products:

- One Williams 1753012 direct vent, fan-type, condensing wall furnace with a hot surface igniter and a two-stage heat exchanger, rated at 17,500 Btu/hr, 94% thermal efficiency, and 93% AFUE
- Two Williams AC2030TN top vent, fan-type, single-sided, low NOx wall furnace with an intermittent pilot, rated at 30,000 Btu/hr, 85% thermal efficiency, 82% AFUE
- One Williams AC3040TN top vent, fan-type, double-sided low NOx wall furnace with an intermittent pilot, rated at 40,000 Btu/hr, 83% thermal efficiency, 82% AFUE
- One Williams TG2030TN top vent, fan-type, single-sided, low NOx wall furnace with an intermittent pilot, powered by a rechargeable battery, rated at 30,000 Btu/hr, 82% thermal efficiency, 80% AFUE.

Table 54 lists the rated and measured natural gas flows of each wall furnace, and their electrical power draw. All furnaces used more natural gas than their rated input, for an average 109% of rated input. None of these furnaces has a standing pilot, so their pilot gas use was zero. The Williams 1753012 condensing furnace used the most electricity during active heating and standby. The Williams AC2030TN furnaces drew about 12.5 watts only while active, and the AC3040TN furnace drew 12.5 watts all the time. The TG2030TN furnace was self-powered by a rechargeable battery, so did not draw any electrical power.

Table 54: Retrofit Wall Furnace Natural Gas Input and Electrical Power

Wall Furnace Tested	Natural Gas Input				AC Power		
Model	Field Sites	Rated Btu/hr	Tested Btu/hr	% Rated Input	Pilot Btu/hr	Active W	Standby W
1753012 (condensing direct vent)	Hayward 3 & 4	17500	19790	113%	0	100.1	0.0
AC2030TN #1 (single-sided low NOx)	LA 104-107	30000	34580	115%	0	12.5	0.0
AC2030TN #2 (single-sided low NOx)	LA 104-107	30000	31780	106%	0	12.6	0.1
AC3040TN (double-sided low NOx)	Oakland SFH	40000	41720	104%	0	12.4	0.0
TG2030TN (self-powered low NOx)	Sacto 4, 15 & 19	30000	31410	105%	0	0.0	0.0
	Average	29500	31856	109%	0	27.5	0.0

Table 55 lists the rated and test-derived thermal efficiency and AFUE for each unit. All of these furnaces exceeded the 75% minimum thermal efficiency required by the American National Standards Institute regulations (ANSI Z21.86 2016) for fan-type wall furnaces. They also exceeded the minimum AFUE required by the Code of Federal Regulations (CFR 430.32 2022), 75% and 76% for furnaces below and above 42,000 Btu/hr rated input. However, all efficiencies derived from these laboratory tests were lower than their rated efficiencies, with thermal efficiency 3.8% lower and AFUE 3.1% lower on average.

Table 55: Retrofit Wall Furnace Thermal Efficiency and AFUE

Wall Furnace Tested		Thermal	Efficiency	AFUE		
Model	Field Sites	Rated TE	Tested TE	Rated AFUE	Tested AFUE	
1753012 (condensing direct vent)	Hayward 3 & 4	94%	89.5%	93%	88.0%	
AC2030TN #1 (single-sided low NOx)	LA 104-107	85%	81.8%	82%	80.4%	
AC2030TN #2 (single-sided low NOx)	LA 104-107	85%	81.2%	82%	79.9%	
AC3040TN (double-sided low NOx)	Oakland SFH	83%	79.0%	80%	77.8%	
TG2030TN (self-powered low NOx)	Sacramento 4, 15 & 19	82%	78.5%	80%	77.3%	
	Average Retrofit	87.0%	83.0%	85.2%	81.7%	

Table 56 lists preliminary energy use and emissions for each wall furnace. This is based on a typical day of operation as found during field testing of retrofit units, where the furnace cycles 1.0 times a day for 42 minutes per cycle and remains in standby for the rest of the day.

Table 56: Retrofit Wall Furnace Energy Use and Emission Rates for a Typical Day of Operation

Wall Furnace Tested	Average Energy Use and Emission Rates					
Model	Field Sites	Btu/Day	kWh/Day	CO lbm/MMBtu	NOx lbm/MMBtu	THC lbm/MMBtu
1753012 (condensing direct vent)	Hayward 3 & 4	13853	0.070	0.021	0.086	0.001
AC2030TN #1 (single-sided low NOx)	LA 104-107	24206	0.009	0.028	0.015	0.170
AC2030TN #2 (single-sided low NOx)	LA 104-107	22246	0.011	0.127	0.012	0.010
AC3040TN (double-sided low NOx)	Oakland SFH	29204	0.009	0.270	0.039	0.018
TG2030TN (self-powered low NOx)	Sacto 4, 19	21987	0.000	0.031	0.013	0.006
	Average	22299	0.020	0.096	0.033	0.041

Not surprisingly, the largest capacity Williams AC3040TN furnace is estimated to use the most natural gas, and the smallest capacity Williams 1753012 furnace would use the least natural gas. The 1753012 furnace also uses the most electricity.

As for flue gas emissions:

- The Williams AC3040TN (double sided) furnace had the highest CO emission rate due to high CO emissions during steady state operation.
- The Williams 1753012 condensing furnace had the highest NOx emissions of these retrofit furnaces, due to high NOx emissions during steady state heating operation. The other three retrofit models were all low NOx furnaces, and substantial effort from the manufacturer appears to have gone into reducing their NOx emissions.
- The AC2030TN #1 furnace had a high total hydrocarbon emission rate, while the AC2030TN #2 furnace had low hydrocarbon emissions. The #1 furnace appears to have had a small natural gas leak which may be representative of leaks in actual installations.

There are no standards or regulations for emissions from wall furnaces. However, as detailed in Appendix A, the South Coast Air Quality Management District and the San Joaquin Valley Air Pollution Control District require central furnaces to keep nitrogen oxide emissions below 0.033 lbm/MMBtu. The AC2030TN and TG2030TN furnaces stay below this limit, while the AC3040TN furnace just exceeds the NOx limit. The 1753012 condensing furnace has an NOx emission rate that is 2.5 times the limit.