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The Multi-scale Methane Challenge

= Basin-level to global scale
e Total inventories & tracking aggregate reductions
= Site/facility-level quantification
e Total inventories & tracking aggregate reductions
e Screening for mitigation opportunities
e Compliance with regulations
= Source-level measurement & mitigation
e Source-specific regulations (e.g. tanks, unlit flares, compressors)

e Actual mitigation occurs at sources
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= Mass-Balance Approaches
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The First Revolution of Airborne Measurement Technologies
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Assessment of methane emissions
from the U.S. oil and gas supply chain

Ramén A. Alvarez'*, Danlel Zavala- -ualn David R. u,-nn David T. Allen®,
Zachary R. Barkley”, Adam R, Brandt*, Kenneth J, Daxis®, Scott C, Herndon®,
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Joannes D. Maasakkers®, Anthony J. Marchese', Mark Omara', Stephen W. Pacala/
. Robinson', Panl B. Shepson'®, Colm Sweeney',

Steven C. Wofsy®, Steven P. Hamburg'

Amy Townsend-Small"

Methane emissions from the U.S. oil and natural gas supply chain were estimated by
using gr b f and validated with aircraft observations
In areas accounting Ior 30% of U.S, gas production, When sealed up nationally, our
facility-based estimate of 2015 supply chain emissions Is 13 £ 2 teragrams per year,
equivalent to 2.3% of gross U.S. gas production. This value is ~60% higher than the U.S.
Environmental Protection Agency Inventory estimate, likely because existing inventory
methods miss emissions released during abnormal operating conditions, Methane
emissions of this magnitude, per unit of natural gas consumed, produce radiative forcing
over a 20-year time horizon comparable to the CO; from natural gas combustion.
Substantial emissien reductions are feasible through rapid detection of the root causes
of high emissions and deployment of less failure-prone systems.
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Recent Emergence of Source-Level Airborne Measurement Approaches

= A second revolution in possibilities?

Bridger Photonics Kairos Aerospace NASA/JPL
Gas Mapping LiDAR (GML)™ LeakSurveyor™ AVIRIS-NG
= Active laser-based sensor = Passive imaging spectrometer = Passive imaging spectrometer
e ~1m resolution e ~3m resolution e ~3m resolution @3000m AGL
e ~100m swath width e ~800m swath width e ~1800m swath width @3000m AGL
A\
X GX :
578 kg/h methane' _ rica \ x‘ Z Lt 8
Ei 3000 \ | ‘-
) féﬂ 1000 | . ‘ & \
, , (Chen et al., EST 2022) o] Ly g ,
& Johnson, EST 2021) S | -
(Tyner ’ (Cusworth et al., Energy & Climate 2021)



Robust, Critical Evaluation of Measurement Technologies

= Fully- and semi-blinded controlled release testing

* B.M. Conrad, D.R. Tyner, M.R. Johnson (2022) Robust Probabilities of Detection
and Quantification Uncertainty for Aerial Methane Detection: Examples for Three
Airborne Technologies, Remote Sensing of Environment (under review: preprint)

* M.R. Johnson, D.R. Tyner, A.J. Szekeres (2021) Blinded evaluation of airborne
methane source detection using Bridger Photonics LiDAR, Remote Sensing of
Environment, 259:112418. (doi: 10.1016/j.rse.2021.112418) Cal‘leton E'

v ENERGY AND
eton (¢ eerl i
5 University g LABORATCRY



https://doi.org/10.31223/X5S05F
https://doi.org/10.1016/j.rse.2021.112418

Controlled Source Rate, Q [kg/h]

Airplane has no knowledge they are even

1. Fully-Blinded Controlled Release Testing of Sensitivity Limits
_—

= Conducted under cover of parallel survey
of oil and gas facilities

O Detected Release

O Missed Release
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M.R. Johnson, D.R. Tyner, A.J. Szekeres (2021) Blinded evaluation of airborne methane
source detection using Bridger Photonics LiDAR, Remote Sensing of Environment, 259,
112418. (doi: 10.1016/j.rse.2021.112418)
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https://www.sciencedirect.com/science/article/pii/S003442572100136X?via%3Dihub

Continuous Probability of Detection (POD) Functions
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Continuous Probability of Detection (POD) Functions

Bridger GML" Kairos LeakSurveyor® NASA AVIRIS-NG
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Typical Altitude: 175 m 900 m 3000 m
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Measurement Swath: 97 m 800 m 1830 m

= Probability of detection any source Q for a given wind speed u and altitude h

B.M. Conrad, D.R. Tyner, M.R. Johnson (2022) Robust Probabilities of Detection and Quantification Uncertainty for Aerial Carleton F“‘ Eﬂ%‘&‘éﬁé‘“
A eer

Methane Detection: Examples for Three Airborne Technologies, Remote Sensing of Environment (under review: preprint) . . RESEARCH
3 University LABORATCRY


https://doi.org/10.31223/X5S05F

2. Semi-Blinded Controlled Release Testing of Quantification Accuracy

= Semi-blinded
(collaborative) controlled
release tests
e Plane flies laps over

controlled release
points and quantifies

e Actual release rates are
not shared with plane
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2. Semi-Blinded Controlled Release Testing of Quantification Accuracy

e
= Semi-blinded

(collaborative) controlled
release tests

Available data
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B.M. Conrad, D.R. Tyner, M.R. Johnson (2022) Robust Probabilities of Detection and Quantification Uncertainty for Aerial
Methane Detection: Examples for Three Airborne Technologies, Remote Sensing of Environment (under review: preprint)
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A Measurement-Based Methane Inventory for British Columbia (BC), Canada

Demonstrate feasibility of
measurement-based methane
inventories using aerial measurements

Key enabling pieces:

e Technology with sufficient
sensitivity to capture majority of
sources

Detailed probability of detection

(POD) functions in varying
conditions

Detailed uncertainty model for
technology

Bottom-up data for unmeasured
sources

ENERGY AND
EMISSIONS
RESEARCH
LABORATORY




A Measurement-Based Methane Inventory for British Columbia (BC), Canada

= Survey includes:

e 59% of all active facilities

AN IR e S e 8% of all active wells
British Columbia c&t =
Canada 2021
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O Active Wells
¥ £ O Aerial Survey Sites
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Protocol to
Create a
“Hybrid”

Bottom-Up

Measurement-
Based Inventory

Johnson, Conrad, & Tyner
(2022) to be submitted

b) Unmeasured Sources
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Legend

Bridger GML characteristics and assorted data

Monte Carlo analysis of quantification uncertainty and detection sensitivity
Population scaling, including bootstrap analysis of sample size effects

Estimated partial inventory; measured and unmeasured sources
Estimated total inventory



Quantification and Sample Size Uncertainties in Measured Inventory Sources

Nominal Measured
Inventory: 112.2 kt/y

Quantification Unc.:
(6.2, +7.8%)

Frequency

Sample Size Unc.:

’ (~17.4, +18.9%)

Total Unc.:

| (-18.3, +21.1%)
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Very powerful approach to quantify, analyze, and minimize uncertainty
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2021 Measurement-Based Methane Inventory for BC
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Contrast Sources in Measured(Hybrid) vs. Current Bottom-Up Inventory

2021 EERL Meas.-Based Inventory Current Official (ECCC) 2020 Inventory

British Columbia Inventory by Source British Columbia Inventory by Source

0,
Wellhead lfyoother 5% Unknown 2%

Piping 2%_ \
Line Heater 2%
Power Gen. 3%

Compressor Seals

Compressors ' N 30%

SCVF 4%
Pneu. Start
Pumps Fuel Gas
7% Pneu. Combustion 1%
Instr. Tanks A Cntrl 17%
10% 13% 11%'
Dehys. Dehys. 2% | Tanks 3%
4% Loading 1%
Regulations won’t work if they tackle the wrong problem
& Y &P Carleton [ eerl
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Conclusions
RN

= New aerial technologies are a revolution in possibilities, but:

e Robust, independently-proven, probabilistic sensitivity and uncertainty models are critical
e Protocols for interpreting data, leveraging POD and uncertainty models, equally important
e Critical to understand where different technologies fit and how they may best be used

= QOil and gas sector emission patterns are/will rapidly evolve
e We must expect inventories and source distributions to be changing rapidly year-over-year

e As we seek to push emissions lower toward zero, measurements will only become more
critical

= Measurement-based inventories and policy are essential to achieving mitigation targets

Carleton 8 par| =
<
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What About Source Variability / Intermittency?

= A novel approach to bounding the
potential uncertainties

" Premise:

Nominal Measured

e Grossly overestimate variability Inventory (See Previous)
112.2 kt/y (-18.3, +21.1%)

Intermittency Unc.:
(—6.6, +6.1%)

using empirical raw data assuming
pass-by-pass data

Quantification Unc.:
(—6.6, +7.1%)

Frequency

Sample Size Unc.:

‘ (=17.4, +18.9%)

Total Unc.:

| (-18.1, +27.1%)

e Bootstrap values assuming they
have no uncertainty

e Then run complete analysis

adding back in quantification plus
80 90 100 110 120 130 140 150

2021 BC Inventory (Measured Sources)
Including Intermittency Effects [kt/y]

sample size uncertainies

20
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Example Aerial Technology: Bridger Photonics Gas Mapping LiDAR

Sites have one or more passes X
Flights with detected emissions W*?EFmal source composite
are revisited in a subsequent day

- Emitter Location (Flight)

Flight Path

Source quantification for
inventory development
purposes requires interpretation
of data from each pass

Tyner & Johnson, Environ. Sci. Technol, 2021

(doi: 10.1021/acs.est,1c01572) Carleton &2 I
oi acs.est.1c g!‘ eer
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Source Attribution: Geo-locating Aerial Survey Imagery

Combining satellite imagery, geo-
located aerial photos, plot plans, &
ground survey data to attribute

2 Carleton
UNIVERSITY EA%EQE%IRY




Source Attribution: Match Sources to Plot Plans

Plot Plans provide a site
schematic and equipment list

Match Sources to Plot Plan
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High Resolution (¥*1m) Data Enables Attribution to Specific Sources

= Key sources:
a) Tanks

b) Compressors

c) Unlit flares

Tyner & Johnson, Environ. Sci. Technol, 2021
(doi: 10.1021/acs.est.1c01572)



https://doi.org/doi:%2010.1021/acs.est.1c01572)

High Resolution (¥*1m) Data Enables Attribution to Specific Sources

= Other detected sources in BC:

Amine boiler unit

Dehydrator

Generator
Cooler

Etc.

Tyner & Johnson, Environ. Sci. Technol, 2021
(doi: 10.1021/acs.est.1c01572)



https://doi.org/doi:%2010.1021/acs.est.1c01572)

Parallel On-Site Measurements of Key Sources

= “VentX” Measurements of Unsteady Methane Vent Sources
e Engine shed vents (CHOPS) in Saskatchewan

Well Casing Vent

. Laser Diode

Av — U

|
12 2F1— oK,
o !

Oil Storage Tank

Wavenumber [cm™] Ultrasonic
flowmeter &

Festa-Bianchet et al. (2022), Sensors (doi: 10.3390/s22114175).
Seymour et al. (2022), Sensors (doi: 10.3390/s22166139).

Carleton 8 par| =
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Parallel On-Site Measurements of Key Sources

= “VentX” Measurements of Unsteady Methane Vent Sources
e Engine shed vents (CHOPS) in Saskatchewan =

e Tank vents in Alberta

Well Casing Vent

. Laser Diode

AV
‘T’ Av — U

[ fr2f1 [2f] — [CH,] Methane Rate [kg/h] |
o> ! E L] " Concentration [%] 202
[ = h _—20%
Oil Storage Tank 2 onumber om-] 5 :_ % — 1o g
& 12 §
£ 24 : i P ;:2’
z 0 .h é ._4 ©

Festa-Bianchet et al. (2022), Sensors (doi: 10.3390/s22114175). PO N
15:00 03/11 17:00 03/11 16:00 04/11

Seymour et al. (2022), Sensors (doi: 10.3390/s22166139).
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2021 Carleton-EERL National Methane Survey

= National-scale effort

e ~8200 sites across 4
provinces
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EERL 2021 National Survey: Distributions of Detected Sources

= Similar, highly-skewed
distributions across all
provinces
e Note these measured

sources are ~80% of total
methane (shown later)

= 95% of GML measured
sources less than 30 kg/h

e 2/3 of measured methane /
~81% of all methane

e Not just about
“super-emitters”

e Mid-sized source key and
will become more important
as mitigation efforts succeed
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EERL 2021 National Survey: Distributions of Detected Sources
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EERL 2021 National Survey: Distributions of Detected Sources
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EERL 2021 National Survey: Distributions of Detected Sources
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EERL 2021 National Survey: Distributions of Detected Sources
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EERL 2021 National Survey: Distributions of Detected Sources

= Measured distributions represent 0->
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EERL 2021 National Survey: Distributions of Detected Sources

= Measured distributions represent 0-> 7]
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