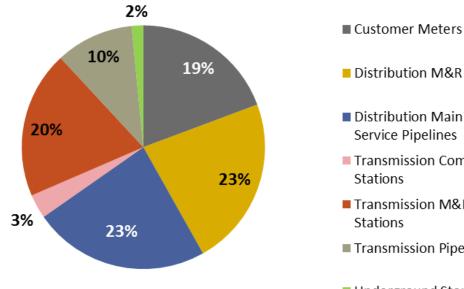
Quantification of Methane Emissions from M&R Stations

François Rongere, Ford Eimon August 2019

Pacific Gas and Electric (PG&E)

Key Statistics


- **6,600 miles** of gas **transmission** pipeline
- 43,100 miles of gas distribution main
- 4.5 million natural gas customers
- Throughput of 839 BCF in 2018
- 8 compressor stations
- 3 underground storage facilities
- 2389 distribution M&R stations
- 2809 transmission M&R stations

SB 1371

- Required CA utilities to report methane emissions focused on 7 categories.
- Reporting began in 2015 (baseline year)
- M&R stations represent 43% of our reported system ٠ emissions.
- Population-based emission factors Using GRI 1996 study results.
- Population-based emission factors do not reward leak abatement efforts

Emission Sources in 2018

- Distribution M&R Stations Distribution Main & Service Pipelines Transmission Compressor Stations
 - Transmission M&R Stations
 - Transmission Pipelines
 - Underground Storage

Transmission: emissions are driven by two categories of M&R stations: A2 and A3

Station Classification	Number of Stations	Annual Emissions (Mscf)	Emission Factor (Scfh)
Farm Taps	2459	30,000	1.4
T-to-T Interconnects	42	65,302	177.5
T-to-T Intraconnects	308	478,878	177.5
	Total (Mscf)	574,180	

EPA Inventory :

T-to-T stations: 2,674 (2016) EF: 28,000 kg/year = 166 scfh Total emissions: 3.9 bcf/y

Distribution: emissions are driven by two categories of M&R stations: A2 and A3

Station Classification	Number of Stations	Annual Emissions (Mscf)	GRI Emission Factor (Scfh)
A1: Above Ground < 100 psi	13	365	4.6
A2: Above Ground [100-300] psi	92	82,478	102.3
A3: Above Ground >300 psi	391	633,372	192.3
B1: Below Ground < 100 psi	323	310	0.11
B2: Below Ground [100-300] psi	683	1,281	0.21
B3: Below Ground >300 psi	887	10,958	1.4
	Total (Mscf)	754,014	

Source: R15-01-008 2018 June Report

Transmission Stations

Distribution Stations

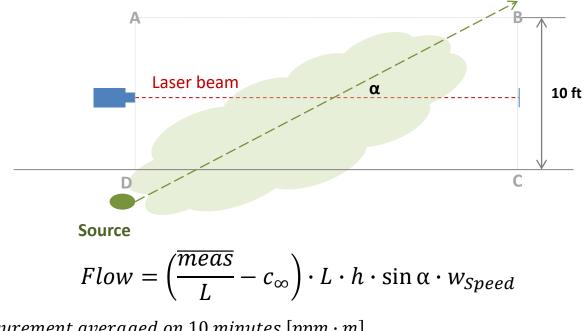
PG<mark>&</mark>E

Sensit: Overview

Sensit FPL unit set up at a Transmission Station in Pittsburg

Use:

- Sensit Gas Trac FPL (Fixed Point Laser)
- Installed at multiple stations for 6 months
- Collected methane concentration and wind data
- Post-processed data for flowrates


Pros:

- Continuous station monitoring
- Quick setup
- Easily accessible data

Cons:

- Only two laser paths to cover entire station
- Heavily reliant on wind
- Flowrate calculations are rough (order of magnitude)

Sensit: Flow Rate Calculation

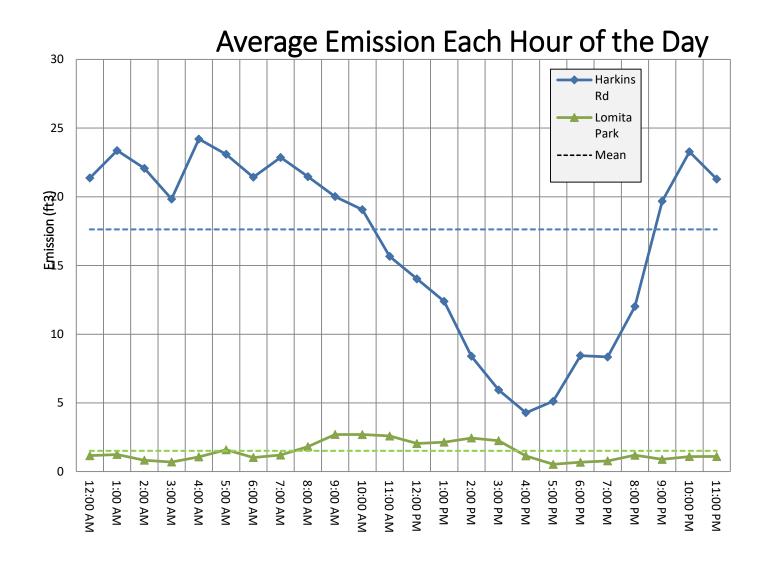
 \overline{meas} : Measurement averaged on 10 minutes $[ppm \cdot m]$ h: Height of the plane (ABCD) [m]L: Length of the laser beam [m] c_{∞} : Background methane concentration [ppm] α : Angle between the wind direction and the plan (ABCD)[degrees] W_{Speed} : Wind speed $[m \cdot s^{-1}]$

- Assumptions:
 - 1. All methane molecules from the source cross the vertical plane (ABCD) defined by the laser beam extended from the ground to a maximum height of 10 feet.
 - 2. The integrated concentration of methane across the laser beam is representative of the average concentration across the plane (ABCD)

Sensit: Station Information

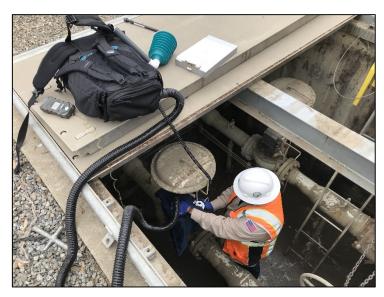
Harkins Road Station

- Last upgraded in 1991
- Continuous bleed controllers


Lomita Park Station

- Rebuilt in 2015
- Intermittent bleed controllers

Sensit: Emission Data



Takeaways:

- Variations due to flow and valve actuation requirements during the day
- Spot measurements are difficult due to the variability throughout the day
- Continuous monitoring allows us to view the dynamics of the emissions

HI FLOW: Overview

Use:

- Visited 10 transmission and 10 distribution stations
- Quantified all detected leaks using a Bacharach HI FLOW sampler

Pros:

- More confidence in emission data
- More detailed information on the specific emission source

Cons:

- Not all emissions were quantifiable (below HI FLOW reading threshold of 0.6 SCFH)
- Emission readings are dependent on the time of day that the station was measured

Results were in-line with results from Sensit FPL data

Location	Sensit Avg. Reading [SCFH]	HI FLOW Measurement [SCFH]
Harkins Rd.	17.5	46.1
Lomita Park	1.5	1.3

Takeaways:

- Significant difference in data based on equipment at the station
 - Continuous bleed pneumatics vs newer intermittent bleed pneumatics
- Random large leaks at stations could drive station emissions

Highest Emitting Transmission Stations Visited:

Location	HI FLOW Measurement [SCFH]	Emissions from Vented Gas
California St	44.5	100%
Harkins Rd	46.1	98%
SP3 & L-191	63.2	92%
SF Gas Load Center	32.1	48%
Тгасу	45.5	0%

HI FLOW: Transmission equipment

Continuous bleed equipment (controllers and actuators) contributing to high station emissions.

Continuous bleed controller at Harkins Rd.

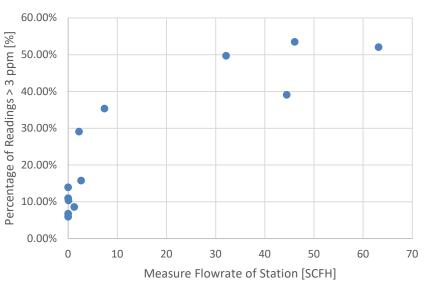
Continuous bleed controller at SP3 L-191 X-tie.

*PG&E replaced 72 high bleed devices in 2018 and has now eliminated all high bleed devices at compressor stations and underground storage facilities.

Takeaways:

- Low emissions (7 SCFH max, 1.5 SCFH average)
- Leak driven emissions

Location	HI FLOW Measurement [SCFH]	Emissions from Vented Gas
19 th St	0	0%
Figueroa St	7.41	0%
Gigling Rd	2.23	0%
Hercules Station	0	0%
Pajaro St	0	0%
PA Metering Station 4	1.12	0%
Pittsburg Station	0.06	0%
Church Rd	0	0%
Rio Vista Station	1.57	33%
Sanitary Fill Rd	2.66	0%



RKI Open Path Laser Spectrometer

Station	OPLS > AVG	OPLS > 3 ppm	Recorded Emissions
19th	9.60%	10.98%	0
Figueroa	21.53%	35.32%	7.41
Gigling	17.73%	29.08%	2.23
Hercules	7.18%	5.94%	0
Pajaro	11.21%	13.93%	0
PAMS4	-	-	1.12
Pittsburg	8.23%	10.35%	0.06
Church	-	-	0
RioVista	-	-	1.57
Rumrill	7.13%	6.75%	0
Sanitary	11.10%	15.77%	2.66
California	21.90%	39.05%	44.46
Fontanoso	-	-	0
Harkins	29.37%	53.46%	46.1
Lomita	7.69%	8.59%	1.26
PLS7	-	-	32.94
SFGLC	23.16%	49.70%	32.14
Sheridan	-	-	8.96
SP3	15.06%	52.02%	63.15
Tracy	-	-	45.52

OPLS Readings vs Hi-Flow Measurements

Use:

- Prototype handheld OPLS device
- Scanned equipment while at station for HI FLOW visits

INSTRUMENTS

NYSEARCH

Pros:

- High sensitivity (10ppb)
- Quick scanning capabilities

Cons:

- Still in development
- Dependent on wind

Takeaways:

- Data shows opportunity to evaluate station health
- Could quickly check during regular maintenance

PGSE

SeekOps Emission Quantification by Drone

Use:

- Same JPL sensor as in the RKI OPLS tool
- Drone flight allows for flowrate calculations
- Visited 5 Transmission and 4 Distribution stations

Pros:

- Provides top-down emissions quantification
- Performed well in Stanford/EDF Mobile Monitoring Challenge

Cons:

- Need operators at location
- Long test required for quantification

Takeaways:

- Valuable for larger stations
- Good for identifying stations that are heavy emitters

Results of flight test

Flight test at Sheridan Rd.

1st generation of sniffer on an sUAS

Station	Emissions (scfh)
Sheridan Road Station	27.4
Vargas Station	0
Fontanoso Road Station	0
PLS7_San Jose	8.3
Tracy Station	2.0
Gigling Road Station	1.9
Sanitary Fill Road Station	3.0
Gonzales River Station	0
San Vincente Station	0

Results:

- Very low emissions for majority of stations
- Sheridan Rd has intermittent bleed controllers
- Sheridan Rd emissions are relatively small compared with EFs and large emitting stations

PG<mark>&</mark>E

Dexen Industries Gas Flow Meter

Use:

- Currently undergoing lab testing
- Future installs at M&R stations on vents

Pros:

- Get continuous vented emissions data
- Get direct measurement on vents

Cons:

- Still in testing
- Setup not ideal for remote locations

Configuration	Flow Range (CFH)	Temperature (°C)	Pressure (PSIG)
1/2 " NPT	1.1 - 141	-20 - 60	0 - 1
1" NPT	1.5 - 212	11	11

Picarro Mobile Survey System

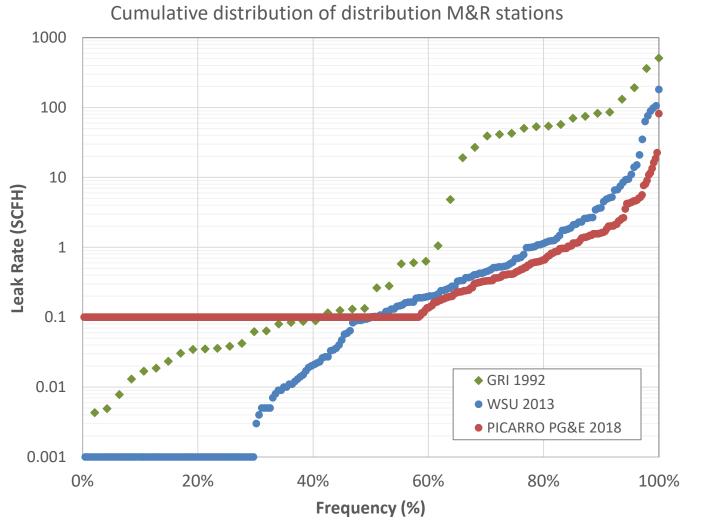
Use:

- Annually drive entire service territory
- Inspect large detections

Pros:

- Rapid scan of stations
- Detection within order of magnitude
- Data is already collected on drives for leak detection and can be analyzed for stations

Cons:


- Only covers stations near distribution piping and roads
- Gas inlet is low and might not "see" vent stacks

Takeaways:

- Quickest way to cover stations
- Use data to determine stations with unexpected large emissions

Picarro: Distribution Station Results

Results:

- Analyzed Picarro emissions data from reg stations "seen" by car over the last 3 years
- Stations follow a Super Emitter distribution
- Data close to WSU study
- Show value in using mobile leak detection system to survey for large emitting stations to prioritize for repair

What we've seen:

- Station emissions are equipment dependent
- Station leaks follow a Super Emitter model

Where we want to go:

- Categorize stations for emissions based on equipment
 - Continuous bleed
 - Intermittent bleed
 - No bleed
- Regularly survey stations with a combination of technology to detect larger leaks
 - Picarro Super Emitter surveys
 - SeekOps flights at larger stations
 - RKI OPLS scans during station maintenance

Thank you!

Ford Eimon ford.eimon@pge.com

