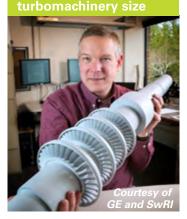


10 MWE SUPERCRITICAL CO₂ PILOT POWER PLANT

10 MWE SUPERCRITICAL CO₂ PILOT POWER PLANT


Advancing high-efficiency supercritical carbon dioxide (sCO₂) Brayton power cycles for power generation

GTI leads the Supercritical Transformational Electric Power Project (STEP Demo), a \$119 million project funded with \$84 million from the U.S. Department of Energy/National Energy Technology Laboratory (U.S. DOE/NETL).

85% reduction in

STEP
Demo will
demonstrate
a fully
integrated
functional
electricity
generating power
plant using
transformational
sCO₂-

based

power cycle technology with dramatically improved efficiencies, economics, and environmental performance.

The specific objective of the project is to demonstrate the highly efficient Brayton power cycle in a pilot-scale, grid-connected power plant. Compared to conventional steam-based power generation, the sCO₂ Brayton cycle uses CO₂ under high-pressure and high-temperature ("supercritical") conditions as a working fluid. This offers improved efficiency and corresponding lower emissions from fossil power plants.

In addition, the cycle lends itself to highly compact turbomachinery, resulting in lower capital costs, reduced plant size and footprint, and more rapid response to changes in power demand that can occur when integrated with renewable wind or solar power generation.

Developing and maturing the technology at pilot scale will facilitate its commercialization and spur the development of necessary designs, materials, components, operation and control systems, sensors, and understanding and characterization needed for larger-scale sCO₂ power conversion systems.

STATUS: GTI, along with partners GE Global Research (GE) and Southwest Research Institute (SwRI), is designing, building, and operating a 10 MWe supercritical carbon dioxide (sCO₂) pilot power plant at SwRI's campus in San Antonio, Texas with support from U.S. DOE/NETL.

JOINT INDUSTRY PROGRAM: Commercial partners provide guidance to the operation and have access to project data. Additional partners are welcome.

BENEFITS

- Improved power plant efficiency
- Zero emission configurations
- Reduction in costs, emissions, and water use
- Quick response time

KEY FEATURES

- Lower emissions and water consumption
- Higher efficiencies with zero emission configurations
- Compact turbomachinery
- Lower capital expenditures
- Facilitates and economizes lowcarbon power production
- Heat source flexibility
- Allows for easy separation and sequestration of CO₂
- Stable, non-toxic working fluid

APPLICATIONS

- Fossil (coal, natural gas)
- Renewable power (concentrated solar, biomass, geothermal)
- Next-generation nuclear
- Industrial waste heat recovery
- Shipboard propulsion

TEAM

Prime Contractor and System Lead

Host Site and Test Operations

10-18

www.stepdemo.us