

Utilizing Advanced Thermoelectrics to Mitigate Methane Emissions at Remote Locations

Abdelallah Ahmed, Engineer

Gas Technology Institute

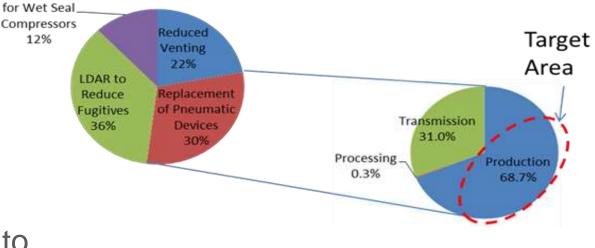
HOST ASSOCIATION

#WGC2018

FUELING THE FUTURE

PROUDLY SUPPORTED BY

PRINCIPAL SPONSORS


Problem Statement – Reduce Natural Gas

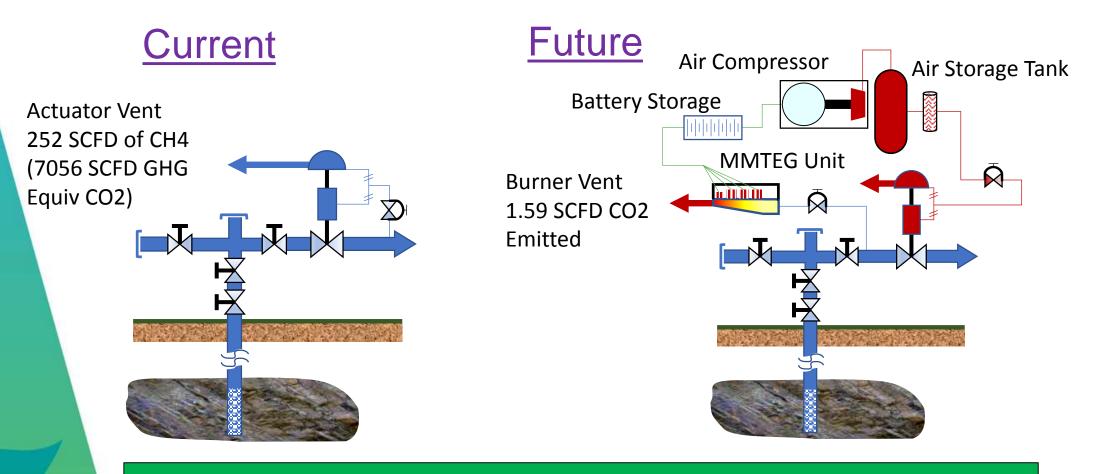
- Natural gas is working fluid for pneumatic actuators
- Results to 518-826 Gg of methane emissions just in the United States¹
 - \$110-175M in lost revenue²

#WGC2018

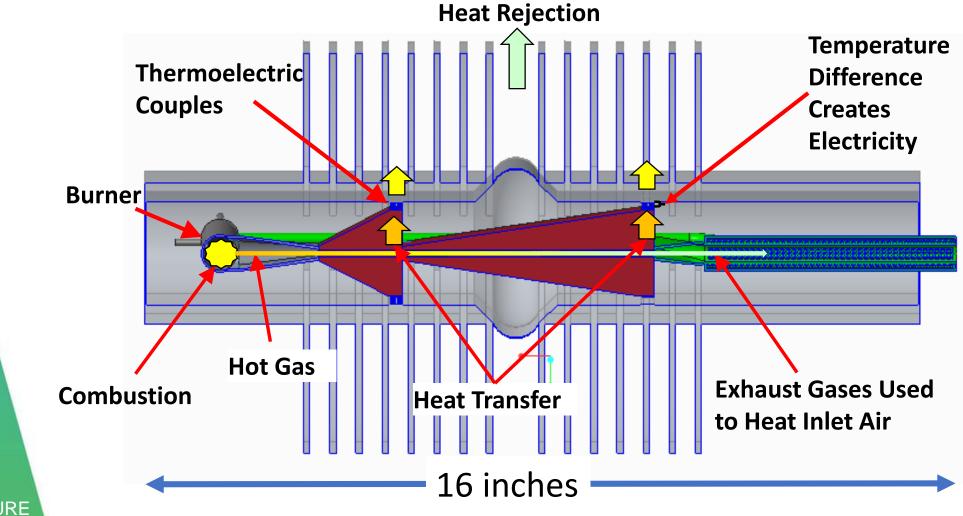
 14500-23100 Gg of equivalent CO2 emissions

Natural gas production is expected to increase by 40% within the next 10 /ears

Distribution of Emission Reduction Potential (ICF, 2014)

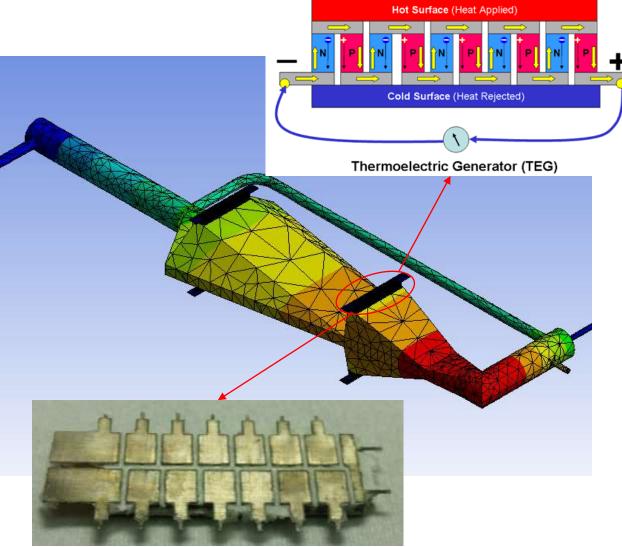

¹Allen, D. T. et al. Methane emissions from process equipment at natural gas production sites in the United States: Pneumatic controllers. Environ. Sci. Technol. 49, 633-640 (2015). ²For natural gas price of \$4/MMBtu FUELING THE FUTURE

Gas Gapture


Simple Retrofit to Existing Wellhead Arrangement

Reduces emissions by 1000X & Increases Revenue

Integrated MMTEG System Utilizes Heat to Create Electricity


Full System Model

Finite element analysis:

- Performance of the TEG assembly
- Heat flux and temperature
- Heat loss
- Structural integrity

Results Indicate:

- 24 We produced for 0.025 Kg/hr of NG
- ~4x TEG efficiency vs. SOA
- Exhaust gas heats inlet air recovers energy

Test Verifications

#WGC2018

FUELING THE FUTURE

- Stable burner demonstrated
- Finite element analysis substantiated through testing
- Data confirms heat flux and heat transfer coefficients agree with analytical values
 Temperatures at hot TEG surface allows maximum efficiency

Burner Testing

Segmented, High Efficiency TEG Module

Proposed MMTEG Wellhead Field Demo Site

Performance/Economic Targets

		Technology	System Complexity	Reliability/ Maintainability	GHG % Reduced	Recoverable Revenue %	Capital Cost	TRL	Applicability
	-	Pneumatic Actuator. Methane Working Fluid		Failure & Wear of Intermittent devices	0%	0%	N/A	9	Current
		Replace working fluid with Instrument Air (IA) via MMTEG system	Uses existing controls	Air Compressor	99.2%	82.7% (15 month Payoff)	Target <\$1.5K	5	BEST Lowest Capital Cost and Highest Recoverable Revenue for mature technology
	Other Candidate Technologies Evaluated								
	A	Replace working fluid with IA via Advanced TEG system	Uses existing controls	Air Compressor	99.8%	83.5% 14 month payback	Target <\$1.5K	3	Not Applicable – Does not meet TRL requirement and advanced TEG development cost is greater than available Doe Funding
	В	Replace Working Fluid with IA via PV Panel	Added controls are solid state	Intermittency, site security issue-theft	100%	13.3%	\$3К	9	<u>Abandoned</u> by operator due to high incidence theft
	С	Replace working fluid with IA via Bi2Te3 TEG System	<250°C Temp adds complexity	Air Compressor	97.6%	12.8%	3.6K	7	Not Cost Effective. Higher capital cost and lower efficiency reduce recoverable revenue.
	KEY - Exceeds Requirement - Effort Required to Meet Requirement - Cannot Meet Requirement							- Cannot Meet Requirement	
#WGC20		E FUTURE		MTEG M				pti	

Summary

- Simple, low-cost and reliable system to eliminate natural gas (NG) emissions from pneumatic control devices
- Efficient, low NOx combustor utilizes minor amount of wellhead NG to produce heat
- High efficiency, segmented thermoelectric modules (600°C) convert heat to electricity
- Compressor pressurizes air to operate pneumatics vs methane
- Reduces GHG emissions by 99.8% and unlocks recoverable revenue by reducing methane leakage