Improving Hydrogen Efficiency During Thermochemical Conversion of Biomass to Fuels

November 4, 2015

Abhijeet P Borole1,3, Alex Lewis3, Spyros Pavlostatthi2, Xiaofei Zeng2, Costas Tsouris1,2, Shoujie Ren3, Philip Ye3, Pyongchung Kim3, Niki Labbe3

1Oak Ridge National Laboratory
2Georgia Institute of Technology
3University of Tennessee
Overview

- Hydrogen Requirement in Thermochemical Biofuel Pathway
- Microbial Electrolysis Technology (MEC)
- Prevent Organic Carbon Loss via Aqueous Phase
- Potential to Improve Process Efficiency via Energy Recovery
- Address Separations and Unit Operations to Support MEC
- Discuss Potential for Carbon and Separations Efficiency Improvement in Bio-oil Pathways
Problem Statement

- Deoxygenation of biomass
- Need for hydrogen to make HC fuels
- Loss of carbon to aqueous phase

Goals

- Develop technology for hydrogen production in biorefinery to facilitate biomass deoxygenation.
- Reforming of aqueous phase organics to hydrogen via microbial electrolysis cell (MEC) technology.
Microbial Electrolysis

- Hydrogen production from pyrolysis-derived aqueous phase
 - Address aqueous carbon emulsified with oil phase – acidic and polar molecules
 - Causes instability of bio-oil
 - Corrosivity of bio-oil
- Carbon, Hydrogen and Separations Efficiency for Bio-oil Pathways program (CHASE)
- Microbial electrolysis
 - Conversion of bio-oil aqueous phase (BOAP) organics to hydrogen
 - Anode: Conversion of degradable organics to electrons, protons and CO₂
 - Cathode: Proton reduction to hydrogen at applied potential of 0.3-1V.
 - Uses electroactive biofilms capable of direct electron transfer

Pathway: Bio-oil Aqueous Phase (BOAP)

→ electrons + protons (anode)
→ H₂ (cathode)

Integrated Pyrolysis-Microbial Electrolysis

Bio-oil production

Bio-oil production process scheme

- Feedstock: switchgrass
- Particle size: less than 2mm
- Water content of switchgrass: 7-8 wt%.
- Feeding rate: 10kg/hr
- Reaction temperature: 500°C
- Bio-oil: combined by three condensers
- Add water to bio-oil (4:1 ratio) to separate aqueous fraction.

Pilot auger pyrolysis reactor at UTK Center for Renewable Carbon

Products from switchgrass pyrolysis

<table>
<thead>
<tr>
<th></th>
<th>Bio-oil production (wt%)</th>
<th>Bio-oil yield (wt%)</th>
<th>Bio-char yield (wt%)</th>
<th>Non-condensable gas yield (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st batch</td>
<td></td>
<td>50</td>
<td>29</td>
<td>21</td>
</tr>
<tr>
<td>2nd batch</td>
<td></td>
<td>54</td>
<td>29</td>
<td>17</td>
</tr>
</tbody>
</table>

Production of bio-oil from switchgrass

Bio-oil Aqueous Phase characterization...

<table>
<thead>
<tr>
<th>Classifications</th>
<th>Major compounds</th>
<th>Concentration in aqueous phase (g/L)</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carboxylic acid</td>
<td>Acetic acid</td>
<td>11.96</td>
<td>HPLC</td>
</tr>
<tr>
<td></td>
<td>Propionic acid</td>
<td>1.89</td>
<td>HPLC</td>
</tr>
<tr>
<td></td>
<td>Vanillic acid</td>
<td>2.69</td>
<td>HPLC</td>
</tr>
<tr>
<td>Sugars</td>
<td>Levoglucosan</td>
<td>15.33</td>
<td>HPLC</td>
</tr>
<tr>
<td>Furans</td>
<td>Furfural</td>
<td>1.01</td>
<td>HPLC</td>
</tr>
<tr>
<td></td>
<td>HMF</td>
<td>0.54</td>
<td>HPLC</td>
</tr>
<tr>
<td></td>
<td>2(5H)-Furanone</td>
<td>1.17</td>
<td>GC</td>
</tr>
<tr>
<td>Alcohols</td>
<td>1,3-propanediol</td>
<td>1.84</td>
<td>GC</td>
</tr>
<tr>
<td></td>
<td>1-hydroxybutanone</td>
<td>1.35</td>
<td>GC</td>
</tr>
<tr>
<td>Aldehydes and ketones</td>
<td>Cyclohexanone</td>
<td>0.07</td>
<td>GC</td>
</tr>
<tr>
<td></td>
<td>3-methyl-1,2-cyclopentanedione</td>
<td>0.46</td>
<td>GC</td>
</tr>
<tr>
<td>Phenols and alkyl phenols</td>
<td>1,2-benzendiol</td>
<td>1.77</td>
<td>HPLC</td>
</tr>
<tr>
<td></td>
<td>Phenol</td>
<td>1.8</td>
<td>HPLC</td>
</tr>
<tr>
<td></td>
<td>2-methoxyphenol</td>
<td>0.25</td>
<td>GC</td>
</tr>
<tr>
<td></td>
<td>2-methyl-4-methyphenol</td>
<td>0.07</td>
<td>GC</td>
</tr>
<tr>
<td></td>
<td>2,6-Dimethoxyphenol</td>
<td>0.26</td>
<td>GC</td>
</tr>
<tr>
<td></td>
<td>3-ethylphenol</td>
<td>0.56</td>
<td>GC</td>
</tr>
<tr>
<td></td>
<td>Sum</td>
<td>43.01</td>
<td></td>
</tr>
</tbody>
</table>

Anode Biocatalyst Development

- Growth of electroactive biofilms for conversion of BOAP compounds.
- **Goals**
 - Tolerance to phenols and furan aldehydes
 - Optimize population diversity
- **Approach**
 - Use of optimized system (MFC) configuration
 - Use of previously optimized process parameters.

Successful development of anode biocatalyst for conversion of switchgrass bio-oil aqueous phase, including removal of acetic acid and phenolic acids.
MEC optimization is a complex process, requiring system design, process and biological parameter optimization.

H₂ production from BOAP – Batch Run

- 0.1 to 0.3 g/l batch BOAP
- 12-24 hour experiment

Hydrogen Yield from Bio-oil Aqueous Phase

- Anode Coulombic Efficiency (CE)
 - 0.1 g/l
 - 0.2 g/l
 - 0.3 g/l

- Cathode Efficiency
 - 0.1 g/l
 - 0.2 g/l
 - 0.3 g/l

H₂ Productivity L/L-anode-day

- 0%
- 20%
- 40%
- 60%
- 80%
- 100%

- 0.1 g/l
- 0.2 g/l
- 0.3 g/l

Hydrogen Yield from Bio-oil Aqueous Phase

H₂ production from BOAP – Continuous Run

- 2 g/l/d to 10 g/l/d continuous BOAP feed
- 12-24 hour experiment

Demonstrated an yield of hydrogen of ~ 80% from bio-oil aqueous phase.

Novelty of Bioelectrochemical Systems

1. Biological electron transfer and electroactive biofilm development
2. Biocatalysis/Electrocatalysis synergy
3. Diversification potential

<table>
<thead>
<tr>
<th>Type of BES</th>
<th>Cathode</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>BES</td>
<td>Oxygen</td>
<td>Electricity</td>
</tr>
<tr>
<td>MFC</td>
<td>Protons</td>
<td>Biohydrogen</td>
</tr>
<tr>
<td>MEC</td>
<td>Acetate</td>
<td>Ethanol/biofuel</td>
</tr>
<tr>
<td>BES</td>
<td>Oxygen</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>BES</td>
<td>Carbon dioxide</td>
<td>Electrofuels</td>
</tr>
<tr>
<td>BES</td>
<td>other/sunlight</td>
<td>Photo/biofuels</td>
</tr>
</tbody>
</table>

MEC Supporting Tasks for Biorefinery Application

Problem

- Understanding of biooil composition
- Biooil pH, instability
- Hydrogen requirement

Solutions

- Produce bio-oil /characterize, analyze aqueous phase
- Microbial electrolysis of pyrolysis aqueous Phase
- Membrane separations Biocatalyst recovery and recycle
- Electrolysis cell materials

Carbon, Hydrogen and Separations Efficiency along the complete pathway

- GHG reduction
- Life cycle analysis Techno-economic Analysis
- Industry partners

Upgraded Intermediate Distribution and Refining

- Membrane process modules, supplies

Feedstock Supply

- Feedstock Processing and Handling

Balance of Plant

- Thermochemical Deconstruction
 - Methods can include:
 - Pyrolysis
 - Solvent Liquefaction
 - Gasification

- Intermediate Upgrading
 - Intermediates can include:
 - Bio-Oils
 - Gasous Mixture

- Distribution, Infrastructure, and End Use

Supporting Tasks for Biorefinery Application

- Membrane separations
- Biocatalyst recovery and recycle
- Microbial electrolysis of furanic and phenolic Substrates
- Electrolysis cell materials
- Industry partners
Potential for MECs in Algal Conversion Pathways

Without MECs

- Pretreatment & Conditioning
- Fermentation and distillation
- Lipid Extraction and Solvent Recovery
- Product Purification and Upgrading

With MECs

- Pretreatment & Conditioning
- Filtration
- Lipid Extraction and Solvent Recovery
- Product Purification and Upgrading

* Sustainability, Special Issue: Sustainability in Bioenergy Production, Borole, A. P., 2015, Sustainable and Efficient Pathways for Bioenergy Recovery from Low-value Process Streams via Bioelectrochemical Systems in Biorefineries." 7(9): 11713-11726.*
Future Work

• Achieve performance to enable commercial consideration

• Scale up studies

Acknowledgements

BioEnergy Technologies Office (CHASE Program)
ORNL LDRD Program

Oak Ridge National Laboratory
Costas Tsouris, Ramesh Bhave
RK Goud

UTK Bredesen Center
Alex Lewis

University of Tennessee Institute of Agriculture
Niki Labbe, Philip Ye, P. Kim, S. Ren

Georgia Institute of Technology
S. Pavlostathis, S. Yiacoumi
S. Zeng, L. Park

Industry Partners:
The FuelCellStore, Inc.
OmniTech International
Pall Corporation