Techno-economic Assessment of Shale Gas Water Management Solutions

Report Published:
June 2012

GTI Technical Contact:
Tom Hayes, Ph.D.
Coordinator, Environmental Engineering Solutions
847-768-0722
Tom.Hayes@gastechnology.org

GTI Business Contact:
Mr. Trevor Smith
Program Manager
847-768-0795
Trevor.Smith@gastechnology.org

Gas Technology Institute
1700 S. Mount Prospect Rd.
Des Plaines, Illinois 60018
www.gastechnology.org

Copyright 2012 Gas Technology Institute
All Rights Reserved
Legal Notice

This information was prepared by Gas Technology Institute (“GTI”).

Neither GTI, the members of GTI, the Sponsor(s), nor any person acting on behalf of any of them:

Makes any warranty or representation, expressed or implied with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately-owned rights. Inasmuch as this project is experimental in nature, the technical information, results, or conclusions cannot be predicted. Conclusions and analysis of results by GTI represent GTI’s opinion based on inferences from measurements and empirical relationships, which inferences and assumptions are not infallible, and with respect to which competent specialists may differ.

Assumes any liability with respect to the use of, or for any and all damages resulting from the use of, any information, apparatus, method, or process disclosed in this report; any other use of, or reliance on, this report by any third party is at the third party’s sole risk.

The results within this report relate only to the items investigated.
Table of Contents

Legal Notice ... i
Table of Contents ... ii
Table of Figures .. vii
List of Tables .. x
Abstract .. 1
Executive Summary ... 3
Acknowledgements ... 5
1. Introduction ... 6
 1.1 Current Situation .. 6
 1.2 Main Water Management Challenges .. 7
 1.2.1 Perception of High Water Consumption ... 7
 1.2.2 Water/waste Management .. 7
 1.2.3 Nature and Composition of Chemical Additives 8
 1.2.4 Optimization of Water/waste Management Solutions 9
 1.3 Nature of the Water ... 9
 1.3.1 Flowback Water Characteristics ... 10
 1.4 Rationale for the Study ... 10
 1.5 Structure of the Study ... 11
 1.5.1 Performing Partners ... 12
 1.6 Intended Outcomes .. 13
2. Water Management Flow Schemes .. 14
 2.1 Flow Scheme 1: Off-site Disposal by Deep Injection 14
 2.2 Flow Scheme 2: On-site Primary Treatment for Reuse 15
 2.3 Flow Scheme 3: Off-site Primary Treatment for Reuse 16
 2.4 Flow Scheme 4: Off-site Primary Treatment and Demineralization 17
3. Water Management Functional Steps .. 19
4. Regulatory Drivers of Water Management Flow Schemes 21
 4.1 Scarcity of Fresh Water Supply .. 21
 4.2 Scarcity of Disposal Options .. 21
 4.3 Environmental Restrictions and Seasonality ... 22
 4.4 Health and Safety .. 22
5. Risk Factors Determining Solution Economics .. 24
5.1 Technical Factors .. 24
 5.1.1 Resource Characteristics ... 24
 5.1.2 Geography ... 24
 5.1.3 Water Quality Requirements ... 24
5.2 Market Factors ... 24
 5.2.1 Water Input/output Projections over Time ... 24
 5.2.2 Stream Factor .. 25
 5.2.3 Technology and Services Availability ... 25
 5.2.4 Price of Gas ... 25
5.3 Societal Factors ... 25
 5.3.1 Environmental Impact ... 26
 5.3.2 Societal Response ... 26
 5.3.3 Policy and Regulatory Uncertainty .. 27
 5.3.4 A Word about the U.S. EPA Study on Hydraulic Fracturing and Drinking Water 28
6. Economic Analysis .. 29
 6.1 Direct Costs (Marcellus Shale) .. 29
 6.1.1 Flow Scheme 1: Off-site Disposal by Deep Injection ... 29
 6.1.2 Flow Scheme 2: On-site Primary Treatment for Reuse .. 30
 6.1.3 Flow Scheme 3: Off-site Primary Treatment for Reuse .. 31
 6.1.4 Flow Scheme 4: Off-site Primary Treatment Plus Demineralization 33
 6.1.5 Treatment System Power Requirements and Carbon Emissions and Costs 34
 6.1.6 Transportation Costs ... 34
 6.2 Direct Costs (Barnett Shale) ... 35
 6.3 Indirect Costs .. 35
 6.3.1 Road Maintenance ... 36
 6.3.2 Carbon Footprint from Transportation .. 36
 6.3.3 Other Air Emissions ... 37
7. Water Management Life Cycle of a Development Area ... 39
 7.1 Abstract ... 39
 7.2 Background (Stochastic Flow Over Time) .. 39
8. Case Studies of Life Cycle Water Flows ... 43
 8.1 The Marcellus Shale (Pennsylvania, USA) .. 43
 8.1.1 The Concept of the Life Cycle ... 43
 8.1.2 Definition of the Marcellus Base Case .. 45
 8.1.3 Sensitivity Analysis ... 48
E-2 Current and Alternative Solutions for Soluble Organics ... 167
E-3 Current and Alternative Solutions for Demineralization .. 170
E-4 Current and Alternative Solutions for NORM Control .. 173
E-5 Current and Alternative Solutions for Salt Management ... 175
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Shale Gas Regions of the United States</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Flowback water characteristics</td>
<td>10</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Flow scheme 1 - Conventional Produced Water Disposal Using Class II Underground Injection</td>
<td>14</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Flow Scheme 2 – Infield primary treatment for reuse</td>
<td>16</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Flow scheme 3 – Offsite primary treatment for reuse</td>
<td>17</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Flow scheme 4 – Offsite primary treatment plus demineralization</td>
<td>18</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Functional steps for the treatment of shale gas waters</td>
<td>19</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Cost of Water Management</td>
<td>25</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Percent of Flowback Water with Less than Stated TDS</td>
<td>40</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Salt Recovered vs Barrels Collected. Projected for the Range of Flowback Events</td>
<td>41</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Example of the Flows and Concentrations Expected During the Completion of the First Field of 16 Wells</td>
<td>44</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Planned Initial Fracture and Three Refractures One Field of 16 Wells (1000 Days Between Fractures)</td>
<td>44</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Cumulative Fracture and Process Water Recovery vs Projected Reuse Capacity in a 19,200 Fracture Play Assuming 33% Blend of Recovered Water in Each Fracture</td>
<td>47</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Comparison of the Rate of Fracture and Process Water Recovery vs Rate of Reuse Capacity in a 19,200 Fracture Play Assuming 33% Blend of Recovered Water in Each Fracture</td>
<td>48</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Sensitivity Analysis; Onset of Cross-Over Points Based on the Number of Planned Refractures per Well</td>
<td>49</td>
</tr>
<tr>
<td>Figure 16</td>
<td>Sensitivity Analysis; Onset of Cross-Over Points Based on the Ability to Reuse Recovered Water in the Next Fracture</td>
<td>50</td>
</tr>
<tr>
<td>Figure 17</td>
<td>Sensitivity Analysis, Definition of the Cross-Over Years in Total Reuse Capacity and Rate of Capacity Use versus Produced Water Flow per Well</td>
<td>51</td>
</tr>
<tr>
<td>Figure 18</td>
<td>Sensitivity Analysis, Effect of Refracture Schedule on Utilization of Reuse Capacity</td>
<td>52</td>
</tr>
<tr>
<td>Figure 19</td>
<td>An Apparent Optimum Refracture Rate for Median Marcellus Flowback at 4800 Wells, Three Refractures per Well, Occurs at 2125 Day Intervals</td>
<td>53</td>
</tr>
<tr>
<td>Figure 20</td>
<td>Conceptual Development of an Approximation of Down-hole Hold Time on Flowback Recovery</td>
<td>54</td>
</tr>
<tr>
<td>Figure 21</td>
<td>Example of Holding 50% of Flowback Water Held Down-Hole for Each Fracture in a Median Marcellus Event</td>
<td>55</td>
</tr>
<tr>
<td>Figure 22</td>
<td>Sensitivity Analysis, Expected Benefits of Holding Flowback Water Down-hole</td>
<td>56</td>
</tr>
</tbody>
</table>
Figure 23: Perturbation of Flowback and Produced Water Recovery Caused by Moratorium on New Well Drilling in Year 10 ... 57
Figure 24: Truck Utilization for the Base Case: Flow Scheme 1 ... 58
Figure 25: Truck Utilization for the Base Case: Flow Scheme 3 or 4 ... 58
Figure 26: Indirect Costs – Carbon Relative to Diesel – Flow Scheme 3 or 4 ... 59
Figure 27: Indirect Costs: Carbon Relative to Diesel - Flow Scheme 1 ... 59
Figure 28: Road Repair .. 60
Figure 29: Water Recover and Non-Reuse Option Capacity for the Barnett Assuming 4800 wells with 19,200 Fractures, 10% Water Reuse, 15 bbl/day Produced Water Recovery ... 62
Figure 30: Natura 2000 in Poland 2007 .. 67
Figure 31: Potential Shale Gas Areas in Poland .. 68
Figure 32: Yearly Flowback and Produced Water and Non-reuse Option Needs for Baltic Base Case .. 74
Figure 33: Yearly Solid Waste Generation for the Baltic Base Case .. 75
Figure 34: Life Cycle Water Management Costs for the Base Marcellus Case with 7 bbl/d produced water and 160 mile round trip to deep well injection .. 78
Figure 35: Cumulative Life Cycle Water Management Costs for the Base Marcellus Case with 7 bbl/d produced water and 160 mile round trip to deep well injection .. 79
Figure 36: Life Cycle Water Management Costs for the Base Marcellus Case with 7 bbl/d produced water and 160 mile round trip to deep well injection .. 80
Figure 37: Cumulative Life Cycle Water Management Costs for the Base Marcellus Case with 7 bbl/d produced water and 160 mile round trip to deep well injection .. 81
Figure 38: Sensitivity of Cumulative Differential Costs for the Black and Green Options; Potential Life Cycle Savings for the Green Option .. 82
Figure 39: Schematic of Management Options for Wellhead Wastes .. 100
Figure 40: Annual Total Solid Waste Generated by a 25x25 Mile Intensely Developed Area 109
Figure 41: Level of Solid Waste Generated over the Life Cycle of a Development Area .. 110
Figure 42: Conceptual Development of an Approximation of Down-hole Hold Time on Flowback Recovery .. 141
Figure 43: Filtration of oil well produced water by commercial UF membrane (open symbols) and Clean Membranes technology (black symbols). Flux is normalized by pure water flux. Experiment consisted of stabilization with clean water, 24 hour dead-end wastewater fi .. 144
Figure 44: EcosFrac Systems on location .. 146
Figure 45: Before and After EES Treatment .. 146
Figure 46: Dynamic Tube-Blocking results showing no scale deposition .. 147
Figure 47: Fountain Quail Mobile Clarifier .. 149
Figure 48: Fountain Quail Mobile Clarifier with Auxiliary Trailer connected to frac tanks .. 150
Figure 49: Particle Size Distribution of Produced Water .. 152
Figure 50: Particle Size Distribution of Filtered Water ... 153
Figure 51: 212 Resources Produced Water Treatment Facility (Commissioned October 2010) 155
Figure 52: Water After 212 Treatment ... 155
Figure 53: Observed 99.46-100% Reduction of Iron ... 161
Figure 54: Observed 100% Reduction of Manganese ... 161
Figure 55: Observed an Average of 97% Reduction in Turbidity ... 162
List of Tables

Table 1: Direct Costs for Flow Scheme 1 – Off-site Disposal by Deep Injection (Marcellus Shale)..30
Table 2: Direct Costs for Flow Scheme 2 - On-site Primary Treatment for Reuse (Marcellus Shale)..31
Table 3: Direct Costs for Flow Scheme 3 - Off-site Primary Treatment for Reuse (Marcellus Shale)..32
Table 4: Direct Costs for Flow Scheme 4 - Off-site Primary Treatment Plus Demineralization (Marcellus Shale)..33
Table 5: Treatment Power Requirements, Carbon Emissions, and Costs by Flow Scheme (Marcellus Shale)..34
Table 6: Wastewater Transportation Costs (Marcellus Shale)..35
Table 7: Survey of Carbon Footprint Costs for Transportation ..36
Table 8: Estimated Carbon Costs per Truck Mile by Flow Scheme (Marcellus Shale)..37
Table 9: Emission Rates for Other Air Pollutants..37
Table 10: Estimated Total Air Emissions per Truck Trip by Flow Scheme (Marcellus Shale) ..38
Table 11: Estimated Costs of Emissions by Flow Scheme (Marcellus Shale) ..38
Table 12: Recovered Flow-back Water Inventory for The Marcellus..42
Table 13: Drilling and Refracture Support of 4800 Wells in a Play of 300 Fields each with 16 Wells ..46
Table 14: Recovered Flow-back Water Inventory for The Barnett..63
Table 15: Summary of Assumptions for Water Management Costs ..77
Table 16: Allowable Concentrations and Levels in Colorado ..102
Table 17: Example of Volume of Solid Waste Generated..107
Table 18: Leachable Toxic Elements..111
Table 19: TCLP Limits for Key Constituents in Texas ..112
Table 20: Summary of Radionuclide Analysis Results ..113
Table 21: 2009 Marcellus Radiological Screening Data ..115
Table 22: Summary of Some Characteristics of Barnett and Marcellus Shale Flowback Waters ..131
Table 23: Members of the Expert Panel ..133
Table 24: Critical Questions to be Addressed by the BSWCMC Hydrofracturing Expert Panel on Water Quality ..135
Table 25: Conclusive Responses from the Frac Job Expert Panel ..136
Table 26: SRB Results Compilation ..147
Table 27: 212 Permit Requirements ..156
Table 28: 212 Feed Characteristics .. 157
Table 29: 212 Actual Effluent Results .. 158
Abstract

A critical challenge for shale gas development is the cost and environmental acceptance of wastewater and solid waste management solutions. Gas Technology Institute (GTI) has completed a research project that:

- Defined the current sustainable practices and emerging technical solutions from a global perspective.
- Categorized the best in class options for water management according to the flow sheet model developed by GTI.
- Identified gaps in water treatment and handling technology development and additional areas for innovation.
- Determined near and long term water management cost reduction and efficiency opportunities taking into account full life cycle costs.
- Identified potential next steps to reduce the cost of disposal of solid drilling wastes and increase assurance to stakeholders of the environmental sustainability of drill cuttings disposal.
- Integrated the elements of the project scope to focus on emerging unconventional gas markets that are just entering into the exploratory phase of resource development.
- Produced a decisive report with findings and recommendations and a public summary.

The intended benefits of this report include:

- A private report providing a holistic view of what is technically possible, environmentally desirable, and economically practical
- An assessment of commercial risk to help reduce market uncertainty
- Benchmark alternatives ($/bbl plus life-cycle costs), identify areas for cost reduction and innovation
- An opportunity to pursue partnerships with emerging technologies
- A product to help communicate safe, reliable, cost-effective, and environmentally sustainable solutions to regulators, solution providers, and the public.
- A product to help inform the upcoming EPA study and the global conversation on unconventional gas water management

The performing partners on this project included:

- Dr. Thomas Hayes, Trevor Smith, and Guy Lewis — Gas Technology Institute
- Judith Herschell — Herschell Environmental
- Steve Hughes, P.E. — Tetra Tech
- Dr. Radisav Vidic — University of Pittsburgh
- Joe Zuback — Global Water Advisors.

Industry participation the project included:

- Aquatech International Corporation
• Aqua-Pure Ventures Inc.
• Chevron Corporation
• Clean Membranes, Inc.
• Devon Energy
• Energie Beheer Nederland B.V. (EBN)
• Ecosphere Energy Services
• Eni S.p.A – E&P Division
• E.ON Ruhrgas E&P GmbH
• GDF Suez
• Keppel Offshore and Marine Technology Center PTE Ltd
• Marathon Oil Corporation
• Noble Energy
• National Oilwell Varco, L.P. (NOV)
• Orlen Upstream Sp. zo. O
• Range Resources
• Reserved Environmental Services
• Schlumberger/MiSWACO
• Seneca Resources
• Shell Global Solutions
• 212 Resources
• Weatherford/Johnson Screens
• Williams Energy
Executive Summary

As shale gas emerges as one of the world’s most abundant, affordable and clean-burning sources of energy, growth in the development and production of these resources will require greater sourcing and management of water. Shale gas development requires multiple wells being drilled from one or two pads in a well field with hundreds of well fields constructed and completed within each development area. It becomes clear from simple month-by-month rollup computations that the annual generation and quality of water to be handled as well as annual output of solid waste (including drilling waste) becomes highly dynamic—constantly increasing and decreasing each year. Within each year of the construction stage of the life cycle of a county-size development area (25 mi x 25 mi), billions of gallons of water must be found (sourced), hundreds of thousands of truckloads must transport water to wellheads for performing hydraulic fracturing of the shale as a necessary step for initiating gas production, tens of millions of barrels of brine (collected as flowback water and produced water) must be reused or disposed of in an environmentally acceptable manner, and hundreds of thousands of tons of drilling waste and sludge must be carefully managed. Since water and waste management represent one of the greatest annual costs of shale gas development (an estimated 8 percent of total revenues from gas production over the life of a development area in the Marcellus Shale could potentially be consumed by water and solid waste management), the economical and environmentally-acceptable management of these streams is critical to the sustainable development of shale gas plays in the U.S., Europe, and throughout the world. The purpose of this project was to provide an assessment and planning approach that can potentially enable shale gas developers to reduce the cost of brine, salt and solid waste management over the life cycle of each development area and assess the need for alternative handling options in the future.

To meet current and anticipated challenges in each region, the industry has implemented and/or considered four flow schemes that can be used for shale gas water disposal and reuse. The flow schemes include: FS1) Direct transportation of brines for disposal in a Class II deep well injection facility; FS2) In-field primary treatment primarily for the removal of suspended solids, oils & greases, microbes (through disinfection), and friction reducer polymer prior to reuse of flowback water for the next frac job; FS3) Near-field (within 20 miles of the well fields) primary treatment mainly for the above constituents plus the possible removal of scale forming constituents (e.g. calcium, magnesium, barium, etc.) followed by reuse of flowback water for the next frac job; and, FS4) Primary treatment plus demineralization using thermal evaporation/distillation processes such as mechanical vapor recompression.

This report describes the economics (i.e. envelope of vendor pricing as a function of salinity, scale, and degree of treatment plus associated direct and indirect costs) and niche application of each of these flow schemes to achieve treatment and disposal goals that are protective of human health and the environment (consistent with local, state and federal regulations). For FS1, typical direct costs range between $1.50-$3.50/bbl depending on volume and deep injection rate discounts. For FS2, typical direct costs range between $1.00-$5.00/bbl depending on volume and level of treatment. For FS3, typical direct costs range between $0.50-$4.00/bbl depending on volume and level of treatment. And for FS4, typical direct costs range between $4.00-$6.50/bbl depending on volume and salinity concentration. Indirect costs including road bonding and repair, potential carbon footprint levies, and other air emissions generated by truck traffic were also evaluated and estimated.

The importance of assessing the economic and strategic implications of future regulatory changes is also acknowledged in this report, which helps to ensure regulators provide opportunity for sustainable economic development of shale gas resources along with assurance that environmental impact is managed appropriately for environmental sustainability.

This analysis was assisted by GTI’s proprietary water-based life cycle computer model which was utilized to forecast the water output, water reuse capacity, salt generation and solid waste output from a development area using more than 30 inputs to describe its characteristics. Some of the inputs used for the model were taken from statistical analyses conducted by GTI on flowback and produced water data.
obtained from the Marcellus and Barnett Shale plays. Life cycle analysis was applied to the active Marcellus and Barnett shale plays as well as an assessment of the exploratory phase of Baltic Basin development in Poland. The Marcellus Base Case identified a number of characteristics that could be of considerable help with water management planning through application of the right flow scheme and management options at the right time. The analysis showed that for a development area, certain water management requirements, reuse opportunities, strategies, and options will change significantly from year to year (or from decade to decade) over the water-based life cycle of shale gas resource development. For example, reuse capacity is greatest in the initial years of the life of a development area. When reuse capacity is exceeded by the generation of flowback and produced water brines (the crossover point), reuse opportunities become minimal and the need for non-reuse options for brine disposal become increasingly important. GTI’s model also showed that much of the water flow and more than two thirds of the salt output occurs in the last half of the life of a development area, posing significant challenges to economic and environmental sustainability if precautions are not taken in time. However, preparation based on quality forecasting and an ability to respond with a flexible water management approach that allows the right flow scheme and/or technology to be applied at the right time can result in substantial savings and improved economic performance for a development area.

Further savings are possible with the application of advanced next generation technologies. Promising new technologies in terms of relevance, potential capability and fit with the unique requirements of shale gas flowback and produced water treatment needs were discussed and compared by this study. Increased collaboration between shale gas developers, solution providers, and research organizations in evaluation of these technologies in the field can be expected to yield tangible benefits including water management savings for developers, reduced uncertainties for solution providers, and greater levels of confidence in a shale gas industry that is committed to sound water management solutions.